Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. An experimental study on the upper part-load elliptical vortex instability in a Francis turbine
 
conference paper

An experimental study on the upper part-load elliptical vortex instability in a Francis turbine

Amini, Ali  
•
Vagnoni, Elena  
•
Favrel, Arthur  
Show more
January 1, 2021
30Th Iahr Symposium On Hydraulic Machinery And Systems (Iahr 2020)
30th IAHR Symposium on Hydraulic Machinery and Systems (IAHR)

This paper presents preliminary results of an experimental study on the occurrence and development of the upper part-load instability in a reduced-scale Francis turbine. The study includes draft tube pressure measurements, high-speed flow visualization, and particle image velocimetry. Our results reveal that for an operating point within the range of the upper part-load instability (70 to 85 % of the nominal discharge), the vortex rope has a circular cross section in non-cavitating conditions, which is preserved even after the appearance of cavitation within the vortex core. It is only below a certain cavitation number that the vortex cross section turns into an ellipse, which is associated with an abrupt increase in the pressure fluctuations with a distinct peak in the frequency domain. A further decrease in the cavitation number results in a constant decrease in the activated frequency while the amplitude of these oscillations experience a rise followed by a quick drop. Phase-averaged velocity fields show that the occurrence and development of cavitation within the vortex rope result in a more diffused distribution of the angular momentum. The instantaneous velocity fields, on the other hand, reveal that the elliptical vortex has various states with either diffused or concentrated velocity distributions, which makes the use of the averaged velocity field for this point less relevant.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Amini_2021_IOP_Conf._Ser.__Earth_Environ._Sci._774_012002.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

20.83 MB

Format

Adobe PDF

Checksum (MD5)

f35f8cce72394b10b8bd3ac5c7555675

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés