Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Patents
  4. System and method for privacy-preserving distributed training of machine learning models on distributed datasets
 
patent

System and method for privacy-preserving distributed training of machine learning models on distributed datasets

Froelicher, David  
•
Troncoso-Pastoriza, Juan Ramón  
•
Pyrgelis, Apostolos  
Show more
2021

A computer-implemented method and a distributed computer system (100) for privacy- preserving distributed training of a global model on distributed datasets (DS1 to DSn). The system has a plurality of data providers (DP1 to DPn) being communicatively coupled. Each data provider has a respective local model (LM1 to LMn) and a respective local training dataset (DS1 to DSn) for training the local model using an iterative training algorithm (IA). Further it has a portion of a cryptographic distributed secret key (SK1 to SKn) and a corresponding collective cryptographic public key (CPK) of a multiparty fully homomorphic encryption scheme, with the local and global model being encrypted with the collective public key. Each data provider (DP1) trains its local model (LM1) using the respective local training dataset (DS1) by executing gradient descent updates of its local model (LM1), and combining (1340) the updated local model (LM1') with the current global model (GM) into a current local model (LM1c). At least one data provider homomorphically combines at least a subset of the current local models of at least a subset of the data providers into a combined model (CM1), and updates the current global model (GM) based on the combined model. The updated global model is provided to at least a subset of the other data providers.

  • Details
  • Metrics
Type
patent
EPO Family ID

70680502

Author(s)
Froelicher, David  
Troncoso-Pastoriza, Juan Ramón  
Pyrgelis, Apostolos  
Sav, Sinem  
Gomes de Sá e Sousa, Joao André  
Hubaux, Jean-Pierre  
Bossuat, Jean-Philippe  
Note

Alternative title(s) : (fr) Système et procédé pour l'apprentissage distribué préservant la confidentialité de modèles d'apprentissage machine sur des ensembles de données distribués

TTO classification

TTO:6.2097

EPFL units
AVP-R-TTO  
LDS  
IdentifierCountry codeKind codeDate issued

US2023188319

US

A1

2023-06-15

EP4136559

EP

A1

2023-02-22

CA3177895

CA

A1

2021-11-11

WO2021223873

WO

A1

2021-11-11

Available on Infoscience
December 3, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/183469
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés