Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Log Barriers for Safe Non-convex Black-box Optimization
 
report

Log Barriers for Safe Non-convex Black-box Optimization

Usmanova, Ilnura
•
Krause, Andreas
•
Kamgarpour, Maryam  
December 2019

We address the problem of minimizing a smooth function f0(x) over a compact set D defined by smooth functional constraints fi(x)≤0, i=1,…,m given noisy value measurements of fi(x). This problem arises in safety-critical applications, where certain parameters need to be adapted online in a data-driven fashion, such as in personalized medicine, robotics, manufacturing, etc. In such cases, it is important to ensure constraints are not violated while taking measurements and seeking the minimum of the cost function. We propose a new algorithm s0-LBM, which provides provably feasible iterates with high probability and applies to the challenging case of uncertain zero-th order oracle. We also analyze the convergence rate of the algorithm, and empirically demonstrate its effectiveness.

  • Details
  • Metrics
Type
report
Author(s)
Usmanova, Ilnura
Krause, Andreas
Kamgarpour, Maryam  
Date Issued

2019-12

URL
https://arxiv.org/abs/1912.09478
Editorial or Peer reviewed

NON-REVIEWED

Written at

OTHER

EPFL units
SYCAMORE  
Available on Infoscience
December 1, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/183422
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés