Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems
 
research article

A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems

Moreira, Joel
•
Richter, Florian Karl  
April 2019
Ergodic Theory and Dynamical Systems

We investigate how spectral properties of a measure-preserving system (X, B, mu, T) are reflected in the multiple ergodic averages arising from that system. For certain sequences a :N -> N, we provide natural conditions on the spectrum sigma (T) such that, for all f(1), ..., f(k) is an element of L-infinity, lim(N ->infinity) 1/N Sigma(N)(n=1) Pi(k)(j=1) T-ja(n) f(j) = lim(N ->infinity) 1/N Sigma(N)(n=1) Pi(k)(j=1) T-jn fj in L-2-norm. In particular, our results apply to infinite arithmetic progressions, a(n) = qn + r, Beatty sequences, a(n) = [theta n + gamma], the sequence of squarefree numbers, a(n) = qn , and the sequence of prime numbers, a(n) = p(n). We also obtain a new refinement of Szemeredi's theorem via Furstenberg's correspondence principle.

  • Details
  • Metrics
Type
research article
DOI
10.1017/etds.2017.61
ArXiv ID

1609.03631

Author(s)
Moreira, Joel
Richter, Florian Karl  
Date Issued

2019-04

Published in
Ergodic Theory and Dynamical Systems
Volume

39

Issue

4

Start page

1042

End page

1070

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ERG  
Available on Infoscience
November 26, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/183248
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés