Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A new elementary proof of the Prime Number Theorem
 
research article

A new elementary proof of the Prime Number Theorem

Richter, Florian Karl  
October 2021
Bulletin of the London Mathematical Society

Let $\Omega(n)$ denote the number of prime factors of $n$. We show that for any bounded $f\colon\mathbb{N}\to\mathbb{C}$ one has [ \frac{1}{N}\sum_{n=1}^N, f(\Omega(n)+1)=\frac{1}{N}\sum_{n=1}^N, f(\Omega(n))+\mathrm{o}_{N\to\infty}(1). ] This yields a new elementary proof of the Prime Number Theorem.

  • Details
  • Metrics
Type
research article
DOI
10.1112/blms.12503
ArXiv ID

2002.03255

Author(s)
Richter, Florian Karl  
Date Issued

2021-10

Published in
Bulletin of the London Mathematical Society
Volume

53

Issue

5

Start page

1365

End page

1375

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ERG  
Available on Infoscience
November 26, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/183239
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés