Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Uniform distribution in nilmanifolds along functions from a Hardy field
 
research article

Uniform distribution in nilmanifolds along functions from a Hardy field

Richter, Florian Karl  
June 2, 2020
arXiv

We study equidistribution properties of translations on nilmanifolds along functions of polynomial growth from a Hardy field. More precisely, if $X=G/\Gamma$ is a nilmanifold, $a_1,\ldots,a_k\in G$ are commuting nilrotations, and $f_1,\ldots,f_k$ are functions of polynomial growth from a Hardy field then we show that $\bullet$ the distribution of the sequence $a_1^{f_1(n)}\cdot\ldots\cdot a_k^{f_k(n)}\Gamma$ is governed by its projection onto the maximal factor torus, which extends Leibman's Equidistribution Criterion form polynomials to a much wider range of functions; and $\bullet$ the orbit closure of $a_1^{f_1(n)}\cdot\ldots\cdot a_k^{f_k(n)}\Gamma$ is always a finite union of sub-nilmanifolds, which extends some of the previous work of Leibman and Frantzikinakis on this topic.

  • Details
  • Metrics
Type
research article
ArXiv ID

2006.02028

Author(s)
Richter, Florian Karl  
Date Issued

2020-06-02

Published in
arXiv
Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ERG  
Available on Infoscience
November 26, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/183238
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés