Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. In Vitro Digestion of Tire Particles in a Fish Model (Oncorhynchus mykiss): Solubilization Kinetics of Heavy Metals and Effects of Food Coingestion
 
research article

In Vitro Digestion of Tire Particles in a Fish Model (Oncorhynchus mykiss): Solubilization Kinetics of Heavy Metals and Effects of Food Coingestion

Masset, Thibault Béranger  
•
Ferrari, Benoît Jean Dominique  
•
Oldham, Dean
Show more
November 22, 2021
Environmental Science & Technology

Tire and road wear particles (TRWP) have been shown to represent a large part of anthropogenic particles released into the environment. Nevertheless, the potential ecological risk of TRWP in the different environmental compartments and their potential toxic impacts on terrestrial and aquatic organisms remain largely underinvestigated. Several heavy metals compose TRWP, including Zn, which is used as a catalyst during the vulcanization process of rubber. This study investigated the solubilization potential of metals from cryogenically milled tire tread (CMTT) and TRWP in simulated gastric fluids (SFGASTRIC) and simulated intestinal fluids (SFINTESTINAL) designed to mimic rainbow trout (Oncorhynchus mykiss) gastrointestinal conditions. Our results indicate that the solubilization of heavy metals was greatly enhanced by gastrointestinal fluids compared to that by mineral water. After a 26 h in vitro digestion, 9.6 and 23.0% of total Zn content of CMTT and TRWP, respectively, were solubilized into the simulated gastrointestinal fluids. Coingestion of tire particles (performed with CMTT only) and surrogate prey items (Gammarus pulex) demonstrated that the animal organic matter reduced the amount of bioavailable Zn solubilized from CMTT. Contrastingly, in the coingestion scenario with vegetal organic matter (Lemna minor), high quantities of Zn were solubilized from L. minor and cumulated with Zn solubilized from CMTT.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Final article_ES&T.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.91 MB

Format

Adobe PDF

Checksum (MD5)

a9a8fc90dd7d99ff7784a053f09e3c15

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés