Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Sifting through the Noise: Universal First-Order Methods for Stochastic Variational Inequalities
 
conference paper not in proceedings

Sifting through the Noise: Universal First-Order Methods for Stochastic Variational Inequalities

Antonakopoulos, Kimon  
•
Pethick, Thomas Michaelsen  
•
Kavis, Ali  
Show more
2021
NeurIPS 2021 : Thirty-fifth Conference on Neural Information Processing Systems

We examine a flexible algorithmic framework for solving monotone variational inequalities in the presence of randomness and uncertainty. The proposed template encompasses a wide range of popular first-order methods, including dual averaging, dual extrapolation and optimistic gradient algorithms – both adaptive and non-adaptive. Our first result is that the algorithm achieves the optimal rates of convergence for cocoercive problems when the profile of the randomness is known to the optimizer: O (1/√T) for absolute noise profiles, and O (1/T) for relative ones. Subsequently, we drop all prior knowledge requirements (the absolute/ relative variance of the randomness affecting the problem, the operator’s cocoercivity constant, etc.), and we analyze an adaptive instance of the method that gracefully interpolates between the above rates – i.e., it achieves O (1/√T) and O (1/T) in the absolute and relative cases, respectively. To our knowledge, this is the first universality result of its kind in the literature and, somewhat surprisingly, it shows that an extra-gradient proxy step is not required to achieve optimal rates.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

sifting_through_the_noise_univ-Supplementary Material.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

Copyright

Size

7.26 MB

Format

Adobe PDF

Checksum (MD5)

f8f019d140a287c3a60170dd83e438d2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés