Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Tissue Engineering with Mechanically Induced Solid‐Fluid Transitions
 
research article

Tissue Engineering with Mechanically Induced Solid‐Fluid Transitions

Mailand, Erik  
•
Özelçi, Ece
•
Kim, Jaemin  
Show more
October 14, 2021
Advanced Materials

Epithelia are contiguous sheets of cells that stabilize the shape of internal organs and support their structure by covering their surfaces. They acquire diverse morphological forms appropriate for their specific functions during embryonic development, such as the kidney tubules and the complex branching structures found in the lung. The maintenance of epithelial morphogenesis and homeostasis is controlled by their remarkable mechanics—epithelia can become elastic, plastic, and viscous by actively remodeling cell–cell junctions and modulating the distribution of local stresses. Microfabrication, finite element modelling, light-sheet microscopy, and robotic micromanipulation are used to show that collagen gels covered with an epithelial skin serve as shape-programmable soft matter. The process involves solid to fluid transitions induced by mechanical perturbations, generates spatially distributed surface stresses at tissue interfaces, and is amenable to both additive and subtractive manufacturing techniques. The robustness and versatility of this strategy for engineering designer tissues is demonstrated by directing the morphogenesis of a variety of molded, carved, and assembled forms from the base material. The results provide insight into the active mechanical properties of the epithelia and establish methods for engineering tissues with sustainable architectures.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Tissue sculpting.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.81 MB

Format

Adobe PDF

Checksum (MD5)

70a37537480cf696f0aace3555e416af

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés