Abstract

This paper presents a comparative study of the geometrical optimization of mechanical wedge-barrel anchors for prestressed carbon fiber-reinforced polymer (CFRP) rods. Various anchor configurations were simulated using three-dimensional finite-element (FE) models. The FE models were validated using the draw-ins of the wedges, which were measured in static tensile tests. The configurations consisted of a steel barrel and aluminum wedges, taking advantage of the previous anchors. The conical profile of the wedge and barrel in different configurations had either a curve or a constant differential angle. In addition, a series of geometric modifications were introduced to the wedge at the loading using a fillet or cut. The stress concentration on the CFRP rod was evaluated using failure index Fs in the Tsai-Wu failure criterion for composite materials. The results of the FE simulations showed that a greater differential angle resulted in a smaller stress concentration at the loading end of the anchor and the modifications led to a reduction in the stress concentration. In addition, the anchor with a curved profile was selected as the optimal design because it had the smallest stress concentration owing to the smooth transition of the differential angle distribution along the wedge profile.

Details