Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity
 
conference paper not in proceedings

Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity

Pesme, Scott  
•
Pillaud-Vivien, Loucas  
•
Flammarion, Nicolas  
June 16, 2021
35th Conference on Neural Information Processing Systems (NeurIPS 2021)

Understanding the implicit bias of training algorithms is of crucial importance in order to explain the success of overparametrised neural networks. In this paper, we study the dynamics of stochastic gradient descent over diagonal linear networks through its continuous time version, namely stochastic gradient flow. We explicitly characterise the solution chosen by the stochastic flow and prove that it always enjoys better generalisation properties than that of gradient flow. Quite surprisingly, we show that the convergence speed of the training loss controls the magnitude of the biasing effect: the slower the convergence, the better the bias. To fully complete our analysis, we provide convergence guarantees for the dynamics. We also give experimental results which support our theoretical claims. Our findings highlight the fact that structured noise can induce better generalisation and they help explain the greater performances observed in practice of stochastic gradient descent over gradient descent.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2106.09524.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY

Size

8 MB

Format

Adobe PDF

Checksum (MD5)

7519f8d260c9030134d716622fdfe536

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés