Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Kalman filter density reconstruction in ICRH discharges on ASDEX Upgrade
 
research article

Kalman filter density reconstruction in ICRH discharges on ASDEX Upgrade

Bosman, T. O. S. J.
•
Kudlacek, O.
•
Fable, E.  
Show more
September 1, 2021
Fusion Engineering And Design

Plasma density is one of the key quantities that need to be controlled in real-time as it scales directly with fusion power and, if left uncontrolled, density limits can be reached leading to a disruption. On ASDEX Upgrade (AUG), the real-time measurements are the line-integrated density, measured by the interferometers, and the average density derived from the bremsstrahlung measured by spectroscopy. For control, these measurements are used to reconstruct the radial density profile using an extended Kalman filter (EKF). However, in discharges where ion cyclotron resonance heating (ICRH) is used, the measurements from the interferometers are corrupted and the reconstructed density is false. In this paper, the existing EKF implementation is improved, implemented and experimentally verified on AUG. The new EKF includes a new particle transport model in the prediction model RAPDENS as well as a new representation of ionization and recombination. Furthermore, an algorithm was introduced that is capable of detecting the corrupt diagnostics; this algorithm is based on the rate of change of the innovation residual. The changes to the RAPDENS observer resulted in better density reconstruction in ICRH discharges where corrupt measurement occur. The new version has been implemented on the real-time control system at AUG and functions properly in ICRH discharges.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Revision_ F Felici.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

7.99 MB

Format

Adobe PDF

Checksum (MD5)

b3910a4d98040d13cb73c6362a68e8e2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés