Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Interplay between upsampling and regularization for provider fairness in recommender systems
 
Loading...
Thumbnail Image
research article

Interplay between upsampling and regularization for provider fairness in recommender systems

Boratto, Ludovico
•
Fenu, Gianni
•
Marras, Mirko  
August 5, 2021
User Modeling And User-Adapted Interaction

Considering the impact of recommendations on item providers is one of the duties of multi-sided recommender systems. Item providers are key stakeholders in online platforms, and their earnings and plans are influenced by the exposure their items receive in recommended lists. Prior work showed that certain minority groups of providers, characterized by a common sensitive attribute (e.g., gender or race), are being disproportionately affected by indirect and unintentional discrimination. Our study in this paper handles a situation where (i) the same provider is associated with multiple items of a list suggested to a user, (ii) an item is created by more than one provider jointly, and (iii) predicted user-item relevance scores are biasedly estimated for items of provider groups. Under this scenario, we assess disparities in relevance, visibility, and exposure, by simulating diverse representations of the minority group in the catalog and the interactions. Based on emerged unfair outcomes, we devise a treatment that combines observation upsampling and loss regularization, while learning user-item relevance scores. Experiments on real-world data demonstrate that our treatment leads to lower disparate relevance. The resulting recommended lists show fairer visibility and exposure, higher minority item coverage, and negligible loss in recommendation utility.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s11257-021-09294-8.pdf

Type

Publisher's Version

Access type

openaccess

License Condition

CC BY

Size

2.3 MB

Format

Adobe PDF

Checksum (MD5)

4cc8d43ad310eb51b45b223635f96c5e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés