Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. CryoGAN: A New Reconstruction Paradigm for Single-Particle Cryo-EM Via Deep Adversarial Learning
 
research article

CryoGAN: A New Reconstruction Paradigm for Single-Particle Cryo-EM Via Deep Adversarial Learning

Gupta, Harshit  
•
McCann, Michael T.  
•
Donati, Laurene  
Show more
January 1, 2021
Ieee Transactions On Computational Imaging

We present CryoGAN, a new paradigm for single-particle cryo-electron microscopy (cryo-EM) reconstruction based on unsupervised deep adversarial learning. In single-particle cryo-EM, the structure of a biomolecule needs to be reconstructed from a large set of noisy tomographic projections with unknown orientations. Current reconstruction techniques are based on a marginalized maximum-likelihood formulation that requires calculations over the set of all possible poses for each projection image, a computationally demanding procedure. Our approach is to seek a 3D structure that has simulated projections that match the real data in a distributional sense, thereby sidestepping pose estimation or marginalization. We prove that, in an idealized mathematical model of cryo-EM, this approach results in recovery of the correct structure. Motivated by distribution matching, we propose CryoGAN, a specialized GAN that consists of a 3D structure, a cryo-EM physics simulator, and a discriminator neural network. During reconstruction, the 3D structure is optimized so that its projections obtained through the simulator resemble real data (to the discriminator). Simultaneously, the discriminator is trained to distinguish real projections from simulated projections. CryoGAN takes as input only real projection images and the distribution of the cryo-EM imaging parameters. It involves neither prior training nor an initial estimation of the 3D structure. CryoGAN currently achieves a 10.8 angstrom resolution on a realistic synthetic dataset. Preliminary results on experimental beta-galactosidase and 80S ribosome data demonstrate the ability of CryoGAN to exploit data statistics under standard experimental imaging conditions. We believe that this paradigm opens the door to a family of novel likelihood-free algorithms for cryo-EM reconstruction.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CryoGAN_A_New_Reconstruction_Paradigm_for_Single-Particle_Cryo-EM_Via_Deep_Adversarial_Learning.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

3.53 MB

Format

Adobe PDF

Checksum (MD5)

510a0adcdae305f89c513530026ca135

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés