Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Convex optimization in sums of Banach spaces
 
research article

Convex optimization in sums of Banach spaces

Unser, Michaël  
•
Aziznejad, Shayan  
July 28, 2021
Applied and Computational Harmonic Analysis

We characterize the solution of a broad class of convex optimization problems that address the reconstruction of a function from a finite number of linear measurements. The underlying hypothesis is that the solution is decomposable as a finite sum of components, where each component belongs to its own prescribed Banach space; moreover, the problem is regularized by penalizing some composite norm of the solution. We establish general conditions for existence and derive the generic parametric representation of the solution components. These representations fall into three categories depending on the underlying regularization norm: (i) a linear expansion in terms of predefined “kernels” when the component space is a reproducing kernel Hilbert space (RKHS), (ii) a non-linear (duality) mapping of a linear combination of measurement functionals when the component Banach space is strictly convex, and, (iii) an adaptive expansion in terms of a small number of atoms within a larger dictionary when the component Banach space is not strictly convex. Our approach generalizes and unifies a number of multi-kernel (RKHS) and sparse-dictionary learning techniques for compressed sensing available in the literature. It also yields the natural extension of the classical spline-fitting techniques in (semi-)RKHS to the abstract Banach-space setting.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S1063520321000592-main.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

630.56 KB

Format

Adobe PDF

Checksum (MD5)

70b0fcf64b2254eb89bf212440f45eb0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés