Dynamics of soliton self-injection locking in optical microresonators
Soliton microcombs constitute chip-scale optical frequency combs, and have the potential to impact a myriad of applications from frequency synthesis and telecommunications to astronomy. The demonstration of soliton formation via self-injection locking of the pump laser to the microresonator has significantly relaxed the requirement on the external driving lasers. Yet to date, the nonlinear dynamics of this process has not been fully understood. Here, we develop an original theoretical model of the laser self-injection locking to a nonlinear microresonator, i.e., nonlinear self-injection locking, and construct state-of-the-art hybrid integrated soliton microcombs with electronically detectable repetition rate of 30 GHz and 35 GHz, consisting of a DFB laser butt-coupled to a silicon nitride microresonator chip. We reveal that the microresonator's Kerr nonlinearity significantly modifies the laser diode behavior and the locking dynamics, forcing laser emission frequency to be red-detuned. A novel technique to study the soliton formation dynamics as well as the repetition rate evolution in real-time uncover non-trivial features of the soliton self-injection locking, including soliton generation at both directions of the diode current sweep. Our findings provide the guidelines to build electrically driven integrated microcomb devices that employ full control of the rich dynamics of laser self-injection locking, key for future deployment of microcombs for system applications. Self-injection locking of the pump laser for a soliton microcomb has significantly relaxed the requirements for laser drives. Here the authors study self-injection locking in experiment and theory and reveal that the soliton formation is feasible with detunings unreachable according to previous theories.
s41467-020-20196-y.pdf
Publisher's version
openaccess
CC BY
1.85 MB
Adobe PDF
990b0fddf39e22a4768c65157d0f9a32