Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Climate change and energy performance of European residential building stocks-A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment
 
Loading...
Thumbnail Image
research article

Climate change and energy performance of European residential building stocks-A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment

Yang, Yuchen
•
Javanroodi, Kavan  
•
Nik, Vahid M.
September 15, 2021
Applied Energy

In recent years, climate change and the corresponding expected extreme weather conditions have been widely recognized as potential problems. The building industry is taking various actions to achieve sustainable development, implement energy conservation strategies, and provide climate change mitigation. In addition to mitigation, it is crucial to adapt to climate change, and to investigate the possible risks and limitations of mitigation strategies. Although the importance of climate change adaptation is well-understood, there are still challenges in understanding and modeling the impacts of climate change, and the consequent risks and extremes. This work provides a comprehensive study of the impacts of climate change on the energy performances and thermal comfort of European residential building stocks. To perform an unbiased assessment and account for climate uncertainties and extreme events, a large set of future climate data was used for a 90-year period (2010-2099). Climate data for 38 European cities in five different climate zones, downscaled by the "RCA4" regional climate model, were synthesized and applied to simulate the respective energy performances of the residential building stocks in the cities. The results suggest that there will be larger needs for cooling buildings in the future and less heating demand; however, there are differences in the variation rates between zones and cities. Discomfort hours will increase notably in cities within cooling-dominated zones, but will not be affected considerably in cities within heating-dominated zones. In addition to long-term changes, climate-induced extremes can considerably affect future energy demands, especially the cooling demand; this may become challenging for both buildings and energy systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Climate change and energy performance of European residential building stocks.pdf

Type

Publisher's Version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

16.5 MB

Format

Adobe PDF

Checksum (MD5)

3c4e42ce1a3689b76736f6d251abb1be

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés