Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Adaptive Self-Sealing Suction-Based Soft Robotic Gripper
 
research article

Adaptive Self-Sealing Suction-Based Soft Robotic Gripper

Song, Sukho  
•
Drotlef, Dirk-Michael
•
Son, Donghoon
Show more
July 3, 2021
Advanced Science

While suction cups prevail as common gripping tools for a wide range of real-world parts and surfaces, they often fail to seal the contact interface when engaging with irregular shapes and textured surfaces. In this work, the authors propose a suction-based soft robotic gripper where suction is created inside a self-sealing, highly conformable and thin flat elastic membrane contacting a given part surface. Such soft gripper can self-adapt the size of its effective suction area with respect to the applied load. The elastomeric membrane covering edge of the soft gripper can develop an air-tight self-sealing with parts even smaller than the gripper diameter. Such gripper shows 4 times higher adhesion than the one without the membrane on various textured surfaces. The two major advantages, underactuated self-adaptability and enhanced suction performance, allow the membrane-based suction mechanism to grip various three-dimensional (3D) geometries and delicate parts, such as egg, lime, apple, and even hydrogels without noticeable damage, which can have not been gripped with the previous adhesive microstructures-based and active suction-based soft grippers. The structural and material simplicity of the proposed soft gripper design can have a broad use in diverse fields, such as digital manufacturing, robotic manipulation, transfer printing, and medical gripping.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Advanced Science - 2021 - Song - Adaptive Self‐Sealing Suction‐Based Soft Robotic Gripper.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.07 MB

Format

Adobe PDF

Checksum (MD5)

9bb95dcfd54d891316eb66871119f918

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés