Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Influence of the Dopant Gas Precursor in P-Type Nanocrystalline Silicon Layers on the Performance of Front Junction Heterojunction Solar Cells
 
research article

Influence of the Dopant Gas Precursor in P-Type Nanocrystalline Silicon Layers on the Performance of Front Junction Heterojunction Solar Cells

Antognini, Luca  
•
Paratte, Vincent  
•
Haschke, Jan  
Show more
July 1, 2021
Ieee Journal Of Photovoltaics

Silicon heterojunction solar cells can employ p-type hydrogenated nanocrystalline silicon nc-Si:H(p) on their front side, since these can provide better transparency and contact resistance compared to hydrogenated p-type amorphous silicon layers. We investigate here the influence of trimethyl boron (TMB) and BF3 as dopant source on the layer properties and its performance in solar cells. Both gases enable high efficiencies but yield a different crystallinity and effective doping. A high BF3 flow lowers the series resistance through a low activation energy of dark lateral conductivity and maintains a high crystallinity. This allows fill factors up to 83%, however with the apparition of a parasitic absorption in the UV. A low TMB flow enables simultaneously a high crystallinity and a low activation energy. As an illustration of this layer potential, a 23.9%-certified efficiency is achieved with a 2 x 2 cm(2) screen-printed device. We finally suggest that similar transport versus transparency trade-offs can be reached for both dopant types for front junction application, while high BF3 flow allowing lower series resistance might be of interest when placed on the rear side.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TMB infoscience.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

n/a

Size

2.24 MB

Format

Adobe PDF

Checksum (MD5)

3b0bafab6b195111d02879ad56736c64

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés