Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Theory of kink migration in dilute BCC alloys
 
research article

Theory of kink migration in dilute BCC alloys

Ghafarollahi, Alireza  
•
Curtin, William  
June 16, 2021
Acta Materialia

Plastic deformation in elemental BCC metals and dilute alloys is controlled by the slower of the kink pair nucleation and kink migration processes along screw dislocations. In alloys nucleation is facilitated and migration inhibited, leading to a concentration- and temperature-dependent transition from nucleation dominance to migration dominance. Here, an analytical statistical model for the stress-dependent kink migration barrier in dilute BCC alloys is developed and validated. The barrier depends only on a clearly-defined solute/screw dislocation interaction parameter, the kink width, and dislocation length between jogs. The analytic model is extensively validated via fully atomistic nudged-elastic band calculations and stochastic simulations in a model Fe-Si alloy. Combined with a recent validated double-kink nucleation theory, a fully-analytic model for the temperature- and concentration-dependent flow stress is obtained that includes the transition from nucleation to migration control. The overall model is applied to Fe-Si and W-Re using independently-determined material properties and good agreement is obtained with experiments over a range of concentrations and temperatures. Overall, the two theories represent a unified, fully-statistical, parameter-free understanding of screw dislocation strength in dilute BCC alloys.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S1359645421004584-main.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.57 MB

Format

Adobe PDF

Checksum (MD5)

d785f5a4d147c96a6125e4bd52989e6e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés