Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Masksembles for Uncertainty Estimation
 
conference paper

Masksembles for Uncertainty Estimation

Durasov, Nikita  
•
Bagautdinov, Timur  
•
Baqué, Pierre Bruno  
Show more
June 19, 2021
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Conference on Computer Vision and Pattern Recognition (CVPR)

Deep neural networks have amply demonstrated their prowess but estimating the reliability of their predictions remains challenging. Deep Ensembles are widely considered as being one of the best methods for generating uncertainty estimates but are very expensive to train and evaluate. MC-Dropout is another popular alternative, which is less expensive, but also less reliable. Our central intuition is that there is a continuous spectrum of ensemble-like models of which MC-Dropout and Deep Ensembles are extreme examples. The first uses effectively infinite number of highly correlated models while the second relies on a finite number of independent models. To combine the benefits of both, we introduce Masksembles. Instead of randomly dropping parts of the network as in MC-dropout, Masksemble relies on a fixed number of binary masks, which are parameterized in a way that allows to change correlations between individual models. Namely, by controlling the overlap between the masks and their density one can choose the optimal configuration for the task at hand. This leads to a simple and easy to implement method with performance on par with Ensembles at a fraction of the cost. We experimentally validate Masksembles on two widely used datasets, CIFAR10 and ImageNet.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Durasov_Masksembles_for_Uncertainty_Estimation_CVPR_2021_paper.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

Copyright

Size

3.99 MB

Format

Adobe PDF

Checksum (MD5)

edaf13dfa47004227dda764593b0fa65

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés