Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation
 
research article

Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation

Fanelli, Adele  
•
Ferlauto, Laura  
•
Zollinger, Elodie  
Show more
June 13, 2021
Advanced Materials Technologies

Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent placement of an interface in close contact with the neural tissue requires invasive surgery, potentially entailing both short- and long-term complications. To tackle this problem, a transient neurovascular interface for neural recording and stimulation is developed. This endovascular array has been fabricated with facile molding techniques using solely polymeric materials. In vitro experiments have shown promising electrochemical performance for both recording and stimulation, together with a lack of cytotoxicity in cultured cells. The device is compatible with standard endovascular catheters and, once deployed, provide good apposition to a cylindrical structure mimicking a blood vessel. The advantage of this device is twofold. On the one hand, the exploitation of the cerebrovascular system as an access route to the neural tissue avoids invasive surgeries. On the other hand, a transient device may reduce the inflammatory reaction and avoid additional surgeries for removal or replacement. This neurovascular interface combines the benefits of both transient bioelectronics and stent technology in a single device to broaden the range of applications of neural interfaces from neurological diseases and mental disorders to bioelectronics medicine.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

admt.202100176.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

7.69 MB

Format

Adobe PDF

Checksum (MD5)

2d975fedee1fb45fb3bf98f32d8cd1b1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés