Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Nano-emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites
 
research article

Nano-emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites

Caprioglio, Pietro
•
Caicedo-Davila, Sebastian
•
Yang, Terry Chien-Jen
Show more
February 12, 2021
Acs Energy Letters

This work investigates halide segregation in methylammonium-free wide bandgap perovskites by photoluminescence quantum yield (PLQY) and advanced electron microscopy techniques. Our study reveals how the formation of nano-emitting low-energy domains embedded in a wide bandgap matrix, located at surfaces and grain boundaries, enables a PLQY up to 25%. Intensity-dependent PLQY measurement and PL excitation spectroscopy revealed efficient charge funnelling and the failure of optical reciprocity between absorption and emission, limiting the use of PLQY data to determine the quasi-Fermi level splitting (QFLS) in these layers. Concomitantly, the small spectral overlap between emission and absorption reduces photon re-absorption. We demonstrate that phase segregation and charge funnelling, although harmful for the radiative efficiency of the mixed phase, are essential for achieving high PLQYs, selectively at low energies, otherwise not achievable in non-segregated perovskites with a similar bandgap. This promotes the applicability of this phenomenon in thermally stable high-efficiency emitting devices and color-conversion heterostructures.

  • Details
  • Metrics
Type
research article
DOI
10.1021/acsenergylett.0c02270
Web of Science ID

WOS:000619803400015

Author(s)
Caprioglio, Pietro
Caicedo-Davila, Sebastian
Yang, Terry Chien-Jen
Wolff, Christian M.
Pena-Camargo, Francisco
Fiala, Peter  
Rech, Bernd
Ballif, Christophe  
Abou-Ras, Daniel
Stolterfoht, Martin
Show more
Date Issued

2021-02-12

Publisher

AMER CHEMICAL SOC

Published in
Acs Energy Letters
Volume

6

Issue

2

Start page

419

End page

428

Subjects

Chemistry, Physical

•

Electrochemistry

•

Energy & Fuels

•

Nanoscience & Nanotechnology

•

Materials Science, Multidisciplinary

•

Chemistry

•

Science & Technology - Other Topics

•

Materials Science

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
PV-LAB  
Available on Infoscience
June 19, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/179274
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés