Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Unveiling the role of dielectric trap states on capacitively coupled radio-frequency plasma discharge: dynamic charging behaviors
 
research article

Unveiling the role of dielectric trap states on capacitively coupled radio-frequency plasma discharge: dynamic charging behaviors

Zhang, Shu
•
Sun, Guang-Yu  
•
Volcokas, Arnas  
Show more
May 1, 2021
Plasma Sources Science & Technology

The influence of charge trap states in the dielectric boundary material on capacitively coupled radio-frequency (RF) plasma discharge is investigated with theory and particle-in-cell/Monte Carlo collision simulation. It is found that the trap states of the wall material manipulated discharge properties mainly through the varying ion-induced secondary electron emission (SEE) coefficient in response to dynamic surface charges accumulated within the solid boundary. A comprehensive SEE model considering surface charging is established first, which incorporates the valence band electron distribution, electron trap density, and charge trapping through Auger neutralization and de-excitation. Theoretical analysis is carried out to reveal the effects of trap states on sheath solution, stability, plasma density and temperature, particle and power balance, etc. The theoretical work is supported by simulation results, showing the reduction of the mean RF sheath potential as charging-dependent emission coefficient increases. As the gas pressure increases, a shift of the maximum ionization rate from the bulk plasma center to the plasma-sheath interface is observed, which is also influenced by the trap states of the electrode material where the shift happens at a lower pressure with traps considered. In addition, charge traps are proven to be helpful for creating asymmetric plasma discharges with geometrically symmetric structures; such an effect is more pronounced in gamma-mode discharges.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

manuscript.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

1.91 MB

Format

Adobe PDF

Checksum (MD5)

9144a3aa026a691be7103af74144b372

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés