Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Toward a remote assessment of walking bout and speed: application in patients with multiple sclerosis
 
research article

Toward a remote assessment of walking bout and speed: application in patients with multiple sclerosis

Atrsaei, Arash  
•
Dadashi, Farzin
•
Mariani, Benoit
Show more
April 29, 2021
IEEE Journal of Biomedical and Health Informatics

Gait speed as a powerful biomarker of mobility is mostly assessed in controlled environments, e.g. in the clinic. With wearable inertial sensors, gait speed can be estimated in an objective manner. However, most of the previous works have validated the gait speed estimation algorithms in clinical settings which can be different than the home assessments in which the patients demonstrate their actual performance. Moreover, to provide comfort for the users, devising an algorithm based on a single sensor setup is essential. To this end, the goal of this study was to develop and validate a new gait speed estimation method based on a machine learning approach to predict gait speed in both clinical and home assessments by a sensor on the lower back. Moreover, two methods were introduced to detect walking bouts during daily activities at home. We have validated the algorithms in 35 patients with multiple sclerosis as it often presents with mobility difficulties. Therefore, the robustness of the algorithm can be shown in an impaired or slow gait. Against silver standard multi-sensor references, we achieved a bias close to zero and a precision of 0.15 m/s for gait speed estimation. Furthermore, the proposed machine learning-based locomotion detection method had a median of 96.8% specificity, 93.0% sensitivity, 96.4% accuracy, and 78.6% F1-score in detecting walking bouts at home. The high performance of the proposed algorithm showed the feasibility of the unsupervised mobility assessment introduced in this study.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JBHI-01008-2020.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

Copyright

Size

7.66 MB

Format

Adobe PDF

Checksum (MD5)

2b654f15f0c2549bf7e794f47d94cf4b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés