Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Synthesis of Kit-of-parts Structures for Reuse
 
conference paper

Synthesis of Kit-of-parts Structures for Reuse

Brütting, Jan  
•
Senatore, Gennaro  
•
Muresan, Alex-Manuel  
Show more
April 29, 2021
Advances in Architectural Geometry 2020
Advances in Architectural Geometry 2020

This paper shows a computational workflow to design a kit of parts consisting of linear bars and spherical joints that can be employed to assemble, take apart, and rebuild diverse reticular structures, e.g. gridshells and space frames. Being able to reuse bars and joints among different structures designed with this method reduces the material demand compared to one-off construction. The input of the method is a set of different reticular structures intended to be built from a common kit of parts. In a first step, the structure geometries are optimised such that the structures share groups of members with identical lengths to allow the placement of same bars in all structures. In a second step, the kit-of-parts joints are optimised to allow their reuse in different structures as well. This is achieved by merging the specific connection patterns of nodes from different structures into one joint. The potential of the proposed method is demonstrated via its application to two case studies: 1) the design of three temporary space frame roofs, and 2) the realisation of three pavilion-scale prototypes serving as a proof of concept. The latter case study also shows the robotic fabrication of the bespoke joints.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Bruetting AAG2020 preprint.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY-NC-ND

Size

8.23 MB

Format

Adobe PDF

Checksum (MD5)

7873cd06d896b0b5ca0013588ace713a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés