Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Multi-CryoGAN: Reconstruction of Continuous Conformations in Cryo-EM Using Generative Adversarial Networks
 
conference paper

Multi-CryoGAN: Reconstruction of Continuous Conformations in Cryo-EM Using Generative Adversarial Networks

Gupta, Harshit  
•
Phan, Thanh Hai  
•
Yoo, Jaejun  
Show more
August 23, 2020
Computer Vision – ECCV 2020 Workshops Proceedings, Part I
Computer Vision – ECCV 2020 Workshops

We propose a deep-learning-based reconstruction method for cryo-electron microscopy (Cryo-EM) that can model multiple conformations of a nonrigid biomolecule in a standalone manner. Cryo-EM produces many noisy projections from separate instances of the same but randomly oriented biomolecule. Current methods rely on pose and conformation estimation which are inefficient for the reconstruction of continuous conformations that carry valuable information. We introduce Multi-CryoGAN, which sidesteps the additional processing by casting the volume reconstruction into the distribution matching problem. By introducing a manifold mapping module, Multi-CryoGAN can learn continuous structural heterogeneity without pose estimation nor clustering. We also give a theoretical guarantee of recovery of the true conformations. Our method can successfully reconstruct 3D protein complexes on synthetic 2D Cryo-EM datasets for both continuous and discrete structural variability scenarios. Multi-CryoGAN is the first model that can reconstruct continuous conformations of a biomolecule from Cryo-EM images in a fully unsupervised and end-to-end manner.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

gupta2001.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.28 MB

Format

Adobe PDF

Checksum (MD5)

81232efe85f3e038aaedb1b8b482ccfd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés