
            

PAPER • OPEN ACCESS

Inferring the flow properties of epithelial tissues
from their geometry
To cite this article: Marko Popovi et al 2021 New J. Phys. 23 033004

 

View the article online for updates and enhancements.

You may also like
Small signal thermal analysis of local
multibarrier behaviour in SiC Schottky
diodes
J León, X Perpiñà, M Vellvehi et al.

-

Symmetry classes of alternating sign
matrices in a nineteen-vertex model
Christian Hagendorf and Alexi Morin-
Duchesne

-

Time-dependent dielectric breakdown in
pure and lightly Al-doped Ta2O5 stacks
E Atanassova, N Stojadinovi, D Spassov
et al.

-

This content was downloaded from IP address 128.178.141.27 on 09/12/2022 at 11:23

https://doi.org/10.1088/1367-2630/abcbc7
/article/10.1088/0022-3727/47/38/385101
/article/10.1088/0022-3727/47/38/385101
/article/10.1088/0022-3727/47/38/385101
/article/10.1088/1742-5468/2016/05/053111
/article/10.1088/1742-5468/2016/05/053111
/article/10.1088/0268-1242/28/5/055006
/article/10.1088/0268-1242/28/5/055006
/article/10.1088/0268-1242/28/5/055006
/article/10.1088/0268-1242/28/5/055006


New J. Phys. 23 (2021) 033004 https://doi.org/10.1088/1367-2630/abcbc7

OPEN ACCESS

RECEIVED

17 July 2020

REVISED

30 October 2020

ACCEPTED FOR PUBLICATION

18 November 2020

PUBLISHED

10 March 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Inferring the flow properties of epithelial tissues from their
geometry

Marko Popović1,6,∗ , Valentin Druelle1,2,6 , Natalie A Dye3,4, Frank Jülicher4,5 and
Matthieu Wyart1,∗

1 Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
2 Biozentrum, University of Basel, Klingelberstrasse 70, 4056 Basel, Switzerland
3 Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 10307 Dresden, Germany
4 Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
5 Max Planck Institute for Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
6 Equal contribution.
∗ Authors to whom any correspondence should be addressed.

E-mail: marko.popovic@epfl.ch and matthieu.wyart@epfl.ch

Keywords: tissue mechanics, vertex model, plasticity, T1 transition

Abstract
Amorphous materials exhibit complex material properties with strongly nonlinear behaviors.
Below a yield stress they behave as plastic solids, while they start to yield above a critical stress Σc.
A key quantity controlling plasticity which is, however, hard to measure is the density P(x) of weak
spots, where x is the additional stress required for local plastic failure. In the thermodynamic limit
P(x) ∼ xθ is singular at x = 0 in the solid phase below the yield stress Σc. This singularity is related
to the presence of system spanning avalanches of plastic events. Here we address the question if the
density of weak spots and the flow properties of a material can be determined from the geometry
of an amorphous structure alone. We show that a vertex model for cell packings in tissues exhibits
the phenomenology of plastic amorphous systems. As the yield stress is approached from above,
the strain rate vanishes and the avalanches size S and their duration τ diverge. We then show that
in general, in materials where the energy functional depends on topology, the value x is
proportional to the length L of a bond that vanishes in a plastic event. For this class of models P(x)
is therefore readily measurable from geometry alone. Applying this approach to a quantification of
the cell packing geometry in the developing wing epithelium of the fruit fly, we find that in this
tissue P(L) exhibits a power law with exponents similar to those found numerically for a vertex
model in its solid phase. This suggests that this tissue exhibits plasticity and non-linear material
properties that emerge from collective cell behaviors and that these material properties govern
developmental processes. Our approach based on the relation between topology and energetics
suggests a new route to outstanding questions associated with the yielding transition.

1. Introduction

A fascinating aspect of biological systems is their ability to grow into well-defined shapes [1]. Thinking
about tissues as materials, what should their properties be to allow for robust morphogenesis? One view is
that tissues are viscoelastic fluids, molded into desired shapes by surface tension and active forces [2–9]. An
alternative picture is that they are yield stress materials [10] similar to clay. Such materials allow for great
control, since shape is changed only if the magnitude of shear stress Σ is above the threshold yield stress Σc.
These approaches can be thought of as two extremes of a continuous spectrum of models, since at finite
temperature, or at finite level of active stress and cell divisions in biological systems [3, 11], materials always
eventually flow. Experimental evidence of glassy behavior [12–14] indeed suggests relevance of intermediate
cases. Quantitatively, an interesting observable to distinguish these regimes is the ratio between the strain
rate increment δγ̇ and the stress increment δΣ causing it. This ratio is simply γ̇/Σ for a Newtonian liquid,
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but is infinite at Σc in a yield stress material at zero temperature. As discussed below, this divergence is
associated with collective events where large chunks of the material rearrange. This fact suggests that one
may be able to decide in which regime tissues operates simply by imaging their dynamics and geometry.
One of our aims is to build the first steps of this long term goal. Note that this endeavor is distinct from
non-invasive force inference methods [15, 16], in which one seeks to reconstruct stress—instead of
plasticity and rheological properties—from geometry.

As it turns out, there is currently a considerable interest in understanding the relationship between
geometry and plasticity in particulate amorphous materials [17–21]. Flow is mediated by local
rearrangements termed shear transformations [22] that are coupled by long range elastic interactions [23].
If thermal fluctuations are small, for Σ > Σc the flow consists of avalanches of correlated shear
transformations. The characteristic avalanche size diverges at Σc [24, 25], and is system spanning for
non-stationary slow (quasi-static) flows occurring in the solid phase Σ < Σc [26]. At a macroscopic level,
for Σ � Σc the shear rate is singular and follows the Herschel–Bulkley law γ̇ ∼ (Σ− Σc)β [27]. A key
ingredient of the scaling theory of this phase transition [28] is that the density P(x) of shear
transformations at a distance x to their local yield stress (i.e. the shear transformations that yield if the shear
stress is increased by x) follows P(x) ∼ xθ , with θ > 0 [29, 30, 31], which is directly related to the presence
of extended avalanches [32]. The exponent θ is predicted [33] to vary non-monotonically as shear strain is
increased from an isotropic state, as observed in particle-based models [34–36], whereas for Σ > Σc there
are no singularities in P(x) and θ = 0 [33]. Various computationally expensive numerical methods are being
developed to extract the field of shear transformations and their associated distance to yield stress x from
the structure alone [17–21], as it would allow one to study fundamental questions including the possible
localization of plastic strain. In this work we present an alternative approach by showing that some models
of disordered materials present the same phase transition, in which this extraction is straightforward.

We consider the vertex model of epithelial tissues [37] in its solid phase where it displays a finite elastic
modulus [38, 39]. We first show that its yielding transition is similar to particulate amorphous materials: its
flow curve is singular with a Herschel–Bulkley exponent β ≈ 1.3, associated with avalanches of plastic
events whose size diverges as S ∼ γ̇−a and last a duration τ ∼ γ̇−c where a ≈ 1/4 and c ≈ 2/3. In such a
model, just like for dry foams, shear transformations are known to correspond to T1 events [40]. We argue
quite generally and test numerically that in models where the energy function depends on the topology, the
distance x to the local yield stress follows x ∼ L where L is the bond length between two vertices. It implies
that P(x) is readily obtainable from the bond length distribution, from which we extract θ. It is found to
change non-monotonically under strain with θ ≈ 0.5–0.6 in isotropic state and with a similar value at large
strain at Σ = Σc: θ ≈ 0.56–0.77. By contrast, θ vanishes in the liquid phase for Σ > Σc. Finally, we
measure the bond length distribution in fruit fly wing disc and pupal wing epithelia, and find a similar
behavior with θ ≈ 0.7–0.9. This measurement suggests the existence of collective effects in tissues and raises
the possibility that these materials function in a regime of high sensitivity δγ̇/δΣ � γ̇/Σ.

2. Flow and loading curves of vertex model

We use the standard vertex model of epithelial tissues [37, 41] where the 2D network of polygonal cells is
assigned an energy function

E =
∑

c∈cells

1

2

[
K

(
Ac − A0,c

)2
+ ΓcP

2
c

]
+

∑
b∈bonds

ΛbLb , (1)

where Ac, Lb and Pb are cell area, bond length and cell perimeter, respectively. Model parameters specify
preferred cell area A0,c, bond tensions Λb and cell perimeter stiffness Γc. To avoid localisation of flow in a
narrow shear band, which occurs in the homogeneous vertex model [42], we introduce cell size
polydispersity for shear flows, see appendices A and C. In all simulations the network is in solid phase with
the normalised preferred perimeter p0 ≡ −Λb/(2Γc

√
A0,c) 	 3.41 for all cells, well below the rigidity

transition point p∗0 	 3.81 [38]. Note that our results below may not hold in the fluid phase of the vertex
model [43], or in active tension networks with isogonal soft modes [44].

The dynamics of the cellular network is described by overdamped dynamics of vertex positions�rα

d�rα
dt

= −ν �∇αE, (2)

where ν = 1 is a mobility. A T1 transition occurs when a bond length becomes smaller than a threshold
length εT1 , see appendix B.
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Figure 1. (a) Left: isotropic disordered polydisperse periodic network of N = 400 cells. Right: snapshot of a network in a steady
state simple shear flow. Colored cells recently participated in a T1 transition. (b) Initial elastic regime of network under shear
strain is followed by plastic regime where elastic loading and relaxation by T1 transitions are equilibrated. Ruggedness of the
stress vs strain curve appears due to periods of stress increase through elastic loading and stress drops by T1 rearrangements.
(c) Steady state flow in two different network size: 400 cells in blue and 2500 cells in green. Dotted line shows the fit of
Herschel–Bulkley law.

We use two ensembles of isotropic disordered networks with N = 400 and N = 2500 cells, as described
in appendix D. An example of a network with N = 400 cells is shown in figure 1(a) left. We perform simple
shear strain simulations on these networks at a constant strain rate, illustrated in figure 1(a) right for
γ̇ = 10−4. The network initially responds elastically: the shear stress Σ in the network grows almost linearly
(figure 1(b)). As the strain is increased, T1 transitions occur and relax the stress in the network, visible as
sudden drops in the stress vs strain curve. In figure 1(a) right we visualise recent T1 transitions that
occurred during a strain increment Δγ = 0.15 by coloring participating cells in red. T1 transitions appear
to be correlated and organised into avalanches of various sizes, corresponding to widely distributed stress
drops in figure 1(c). Eventually a steady state is reached in which stress relaxation due to T1 transitions
balances the elastic loading. In figure 1(d) we show the steady state flow curve. It is well described by the
Herschel–Bulkley law γ̇ ∼ (Σ− Σc)β [27] with the yield stress Σc ≈ 0.93 7 and exponent β ≈ 1.3 8.

3. Energy cusp at T1 transitions

Next we characterize the T1 transitions or elementary plastic events. For this purpose, we identify the bond
in a network that will first disappear under strain. We then constrain the length of that bond to a value L∗

and determine the energy of the network under strain. The original bond length is assigned negative values
and the new bond that appears through the T1 transition is assigned positive values. In figure 2 we show the
energy of the network relative to the energy of the unconstrained network, as a function of strain
ΔE(L∗; γ) ≡ E(L∗; γ) − E(γ). Originally the system is in a metastable state, corresponding to the local
minimum of ΔE. As the shear stress increases the minimum disappears and the T1 transition occurs. The
energy profile shows a cusp at the onset of T1 where L∗ = 0, a well known feature of the vertex model
energy landscape [38, 46–48]. The presence of a cusp in the energy profile allows us to relate the bond

7 The stress component corresponding to the simple shear is defined by Σ ≡ (∂E/∂γ)/N. In our simulations Γ = 1 and a typical bond
length is L0 = 1. Therefore, the reported values of stress can be understood as normalised by ΓL2

0.
8 A precise measurement of the exponent β that could discriminate theoretical predictions [45] is beyond the scope of this work.

3



New J. Phys. 23 (2021) 033004 M Popovíc et al

Figure 2. (a) The energy profile parametrised by the imposed length of a bond L∗ evolves under strain until the metastable state
disappears at strain γT1 and a T1 transition occurs. Negative values of bond lengths denote lengths before the T1 transition.
(b) Schematic of the cusp in the energy profile: the energy barrier is quadratic in bond length Eb ∼ L2 and the force required to
shrink the bond is linear x ∼ L. Test of scaling relations between the length L and: (c) the energy barrier Eb, (d) the force distance
to a T1 transition x, in isotropic disordered networks. Error bars represent one standard deviation of the sample.

length of short bonds to the additional force9 x at the bond needed to drive a T1 transition. Namely,
expanding ΔE(L∗, γ) in bond length around the equilibrium value L reads:

ΔE(L∗) ≈ ΔE(L) +
1

2
ΔE′′(L)(L∗ − L)2 (3)

and we see that at T1 transition, corresponding to L∗ = 0, the energy barrier to the T1 transition is:

Eb ≡ ΔE(L∗ = 0) ≈ 1

2
ΔE′′(L)L2. (4)

Thus, the force on that bond required to trigger the T1 transition is:

x ≈ ΔE′′(L)L. (5)

Since the effective stiffness of the bond ΔE′′(L) is expected to be finite at a T1 transition, we find Eb ∼ L2

and x ∼ L. These relationships were previously reported and supported analytically in a continuum elastic
model of a T1 transition [48]. Here, we find that they are a generic consequence of the cusp in the energy
profile10. Ultimately, the origin of this cusp lies in the form of the energy function that depends on the
bond lengths, cell perimeters and area. These quantities are smooth functions of the vertex positions and
the energy function is therefore continuous even when topology changes. However, at a T1 transition a
bond is removed and another one added. This implies that gradients of the energy function are
discontinuous at the T1 transition, leading to a cusp in the energy profile. Consequently, forces can change
discontinuously at the transition point. Therefore, we expect to generically find x ∼ L in cellular systems
such as epithelial tissues and dry foams for which the dependence of the energy on the vertex position is
topology-dependent. By contrast, particle systems in which the energy depends on the particle positions
independently of any notion of topology cannot show such a cusp (as long as the interaction potential is
smooth). Furthermore, due to the cusp at the T1 transition the stiffness of the corresponding displacement
mode does not vanish, as it would at the plastic event in particle systems11. Therefore, we do not expect to

9 Note that exerting a stress increment at the boundary of the system will in general generate a bond force proportional to that
increment, so the quantity x we use here characterizes well the distance to a local yield stress.
10 For example, if the energy landscape of vertex model were smooth at T1 transitions the relationship would be x ∼

√
L and Eb ∼ L3.

11 In systems with smooth energy function a plastic event corresponds to the usual saddle-node bifurcation.
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Figure 3. (a) Magnitude of the shear stress redistribution ‖Δσ‖ in the cellular network after a T1 transition at the origin. It is
consistent with that of a force dipole. Inset: four-fold symmetry of shear stress redistribution component Δσxx, consistent with
that of a force dipole. (b) Cumulative bond length distribution C(L)=

∫ L

0 P(L′)dL′ in disordered isotropic networks. It is
consistent with P(L) ∼ xθ with θ ≈ 0.5–0.6, see appendix H for details. At low L, P(L) ∼ const. due to finite system size. (c) The
effective exponent θeff . measured as a function of strain, starting from a disordered isotropic networks, see appendix I. (d) The
cumulative distribution of adjusted bond lengths Lr ≡ L − εT1 in steady state simple shear flow with strain rate varying between
γ̇ = 5 × 10−5 (blue line) and γ̇ = 1 (bright green line). We find that at the lowest strain rates the effective exponent θeff .

converges to θ ≈ 0.56–0.77, see appendix J for details. As in isotropic networks, at low Lr we find P(Lr) ∼ const., as expected for
any finite strain rate [33].

find a signature of local plastic events in the eigenvalues of Hessian matrix of energy function, which could
explain the lack of soft non-localised modes recently observed in the Voronoi vertex model12 [49].

We test these predictions in isotropic disordered networks by forcing bond length to attain a very small
value Lmin = 10−6 and determining the corresponding network energy change and the constraining force
magnitude x. Results shown in figures 2(c) and (d) are consistent with our predictions. Therefore,
identifying the locations of short bonds allows us to read the map of ‘weak spots’ in the system, as well as to
deduce the distribution P(x).

4. Stability of the cellular network

After a T1 transition, the network relaxes to a new metastable state with redistributed shear stresses. We
measure the stress redistribution by enforcing a T1 transition and measuring the change in stress within
each cell after the network had relaxed (the cellular stress is defined as in [50]). In an elastic 2D medium we
expect the shear stress redistribution to be consistent with that of a force dipole in an elastic medium:
Δσxx ∼ cos(4ϕ)/r2, Δσxy ∼ sin(4ϕ)/r2 [23]. Figure 3(a) shows the shear stress redistribution, obtained by
orienting the disappearing bond direction along the x-axis and averaging over 50 realisations, as detailed in
appendix E. We find a clear four-fold symmetry of Δσxx (inset) as well as inverse quadratic decay of its
magnitude, as expected for a force dipole and consistent with simulations of 2D foams [40].

The stress change after a T1 transition can trigger new T1 transitions if there are bonds with small x in
the network. In the solid phase, the stability of the network with respect to extensive avalanches of T1

transition imposes P(x) ∼ xθ with θ > 0, otherwise never-ending avalanches would occur [31]. As we have
demonstrated x ∼ L in the vertex model. Therefore, bond length distribution should vanish with the same
exponent P(L) ∼ Lθ, and θ can be extracted from P(L). We measure the cumulative distribution
C(L)≡

∫ L
0 P(L′)dL′ in disordered isotropic networks. We find a scaling regime, whose range of validity

grows with system size, for which θ ≈ 0.5–0.6 (figure 3(b)), see appendix H for details. At even smaller L,

12 The voronoi vertex model has the same energy function as the usual vertex model, but its degrees of freedom correspond to cell
centers. The network topology is constructed from these centers by performing a Voronoi tessellation at each time-point.
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Figure 4. (a) The susceptibility χ̃4(τ ) in the steady state flow at different strain rates grows with τ to a maximal value, which can
be interpreted as the avalanche size S of T1 transitions. (b) The collapse of χ̃4(τ ) curves after rescaling axes shows that the
characteristic avalanche size diverges as S ∼ γ̇−1/4 and that the characteristic avalanche duration diverges as τA ∼ γ̇−2/3.
Measurements shown are obtained with N = 400.

the bond lengths distribution departs from this scaling as P(L) ∼ const., as expected due to finite size effects
and also observed in elasto-plastic models [28].

Interestingly, these values are consistent with those found in two-dimensional elasto-plastic models [28].
In these coarse-grained models, the material is described as a collection of mesoscopic blocks with a
simplified description of plastic events: a block yields when the local yield stress is reached, it accumulates
plastic strain and redistributes stress in the material as a force dipole [51, 52]. Since both ingredients are
present in vertex model as well, as we have seen, it is not surprising that we find a consistent value of θ.

We next studied the evolution of the exponent θ during the transient loading period, between the
initially isotropic network and the steady state. Surprisingly, it has been predicted that θ would then
non-monotonically depend on strain [33], a result observed in elasto-plastic models [26] but only indirectly
observable in amorphous solids where P(x) is very hard to access [34–36]. To test directly this prediction,
we measure the bond length distribution as a function of strain at a small constant strain rate γ̇ = 10−4,
close to the quasi-static limit. Note that even in the thermodynamic limit we expect to find singular P(x)
and P(L) only in the quasi-static limit of vanishing strain rate (at any finite rate, there are always T1

transition occurring leading to θ = 0 [33]. However, in a finite system we can still measure an effective
exponent θeff .. We confirm that the evolution of θeff . with strain is non-monotonic, see figure 3(c).

It is also important to quantify the distribution of bond lengths in steady state flow, see figure 3(d). At
high strain rates we find θeff . → 0 as expected, while in the limit of vanishing strain rates the effective
exponent approaches the value θ ≈ 0.56–0.77 (figure 3(d)). Thus, P(L) can be used to locate the distance to
the yield stress, at least in this setting where noise is absent.

Finally, note that the fact that the density of bonds vanishes at small argument as P(L) ∼ Lθ is a
necessary constraint required by network stability [31]. Such a power-law distribution of weak regions is
found in amorphous materials under athermal quasi-static shear and in slowly driven glassy materials in
various contexts [32]. Generating glasses in which weak regions are depleted even further requires extreme
annealing [53]. Cellular networks could also be made more stable, for example by sequentially performing
T1 transitions on the shortest bonds as discussed in reference [54]. Such an annealing process depletes the
distribution of short bonds and can create a gap in the distribution P(L) that does not occur in the
distributions discussed here. More generally, we expect our results to be relevant for describing disordered
developing tissues undergoing shape changes through T1 transitions, whereas it might not describe very
well-annealed tissues.

5. Collective behavior of T1 transitions

Quite generally in disordered systems [31], a singularity in the density of weak regions P(x) is synonymous
to avalanche-type response where many weak regions—here T1’s—rearrange in concert. To test if this idea
holds in the vertex model, we quantify the correlation between T1 transitions by using a susceptibility
motivated by the four-point susceptibility χ4 studied in glasses [55, 56], elasto-plastic models [57, 58] and
vertex models [49]. We define χ̃4 as a normalised variance of the number nT1

(τ ) of T1 transitions in the
time-window τ [57, 59]:

χ̃4(τ) ≡
〈

(nT1 (τ) − 〈nT1 (τ)〉)2
〉

〈nT1 (τ)〉 . (6)

6
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Figure 5. (a) Pupal wing and (b) wing disc of a fruit fly with regions used for analysis highlighted in yellow. Red colored cells
have either lost or gained a bond as a part of T1 transition in the last 5 min. (c) Cumulative bond length distribution in
developing fruit fly wing at the pupal stage of development (blue) and in the larval wing disc (green) both show a clear power-law
scaling of P(L) at small bond lengths. Measured effective exponent is in the range θeff . ≈ 0.7–0.9.

If T1 transitions were completely independent, the variance would be equal to the mean at any τ and
χ̃4(τ) = 1. For T1 transitions organised in avalanches χ̃4 grows and reaches a maximum at τA,
corresponding to the typical avalanche duration. The value at the maximum can be interpreted as a
characteristic avalanche size S ≡ χ̃4(τA). After an avalanche, the stress has relaxed locally and new
avalanches are less likely to occur. This effect leads to a decay of χ̃4(τ) for τ > τA.

We measure χ̃4(τ) in steady state shear flow at different strain rates, see figures 4(a) and (b). We find
that χ̃4 displays a peak which grows near the transition point γ̇ → 0, indeed supporting the idea that the
dynamics becomes collective at that point. Furthermore, we find that the χ̃4 curves at different strain rates
collapse when re-scaling the axes as γ̇2/3τ and γ̇1/4χ̃4. Therefore, as the strain rate vanishes, the mean
avalanche size diverges as S ∼ γ̇−1/4 and the mean avalanche duration as τA ∼ γ̇−2/3.

6. Fly wing epithelia

We have shown that in the vertex model, the bond length distribution P(L) is indicative of the regime in
which the material flows: it presents a singular distribution approaching the solid phase, where the
dynamics becomes collective and the flow curve is non-linear.

As a first test of the relevance of these ideas to real tissues, we analyze the bond length distribution in
wing epithelium of the fruit fly at two stages of development: (i) during pupal wing morphogenesis, imaged
in vivo [6] and (ii) the wing disc epithelium, in third instar larva wing disc epithelium imaged ex vivo [60].
In the pupal wing we considered a region defined by the longitudinal veins denoted L4 and L5, and the
posterior crossvein (yellow cells in figure 5(a)), imaged at 5 min intervals between 19 and 23 h after
puparium formation, collected from 3 experiments [61]. In figure 5(b) we show the analyzed region in the
wing disc epithelium, corresponding to the wing disc pouch, imaged at 5 min intervals over about 13 h and
collected from 5 experiments. In both figures 5(a) and (b) we indicate in red the cells that have lost or
gained a bond as a part of T1 transition in the last 5 min (the time resolution of experiments).

Note that the wing disc epithelia have been developing for about 100 h before the imaging has started
[60], while pupal wings have undergone a significant three-dimensional shape change, called eversion [62],
before the pupal morphogenesis. Therefore, the initial state of these tissues at the beginning of the
experiments could already contain a significant strain history. Thus, although the amount of strain
accumulated during experiments is small (∼ 0.1–0.2 for pupal wings [6, 61] and ∼ 0.05–0.1 for wing discs
[60]), it is not clear if we are in a large or small strain regime, with respect to the strain where figure 3(c)
displays a minimum.

Remarkably, we find that in both tissues the bond length distribution P(L) vanishes at small L with the
effective exponent θeff . ≈ 0.7–0.9 (see figure 5(c) and appendix K for details), similar to those measured in

7
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the slowly flowing vertex model at small or large strain. This observation suggests that the scaling relation
x ∼ L holds in real tissues as well, in the range of L that we can probe. Clearly for very small bonds, this
relationship must eventually break down due to finite size of vertices [63, 64].

It would be very interesting to test this scaling relation directly by perturbing the system. It could be
achieved by observing tissue response to a localised mechanical perturbation, such as laser ablation of a
single bond: if the energy landscape were smooth with no cusps, the stiffness of the corresponding
displacement mode would vanish in approach to a T1 transition as expected near a saddle node bifurcation.
As a consequence, a strong locally heterogeneous response would be observed in the experiment at locations
of short bonds just before they rearrange, as observed in particulate amorphous solids [65] preceding a
plastic event. On the other hand, in presence of a cusp there would be no softening and no strong locally
heterogeneous displacement preceding cell rearrangements.

Our observation also raises the possibility that developing tissues can lie in a non-linear regime with
δγ̇/δΣ � γ̇/Σ, where collective effects are important. Unfortunately, such collective effects are very hard to
measure in our experimental data, because the strain rate is not stationary, leading to difficulties using the
definition of χ̃4. Thus, it would be important to look for non-linear effects more directly by measuring
stress dynamics using laser ablation experiments and comparing them to elastic and plastic flow
components [6, 66–68]. Alternatively, epithelia obtained as cultured cell monolayers might provide
interesting experimental systems that allow for direct rheological experiments. In such systems non-linear
flow properties have been observed [69] and bond length distributions P(L) could be measured in different
flow regimes.

7. Discussion

We have shown that in the vertex model in its solid phase, the distribution of bond lengths provides the
distribution of local distances to yield stress x. The distribution P(x) reveals properties of the regime in
which flow is occurring. This result has two consequences.

First in developing epithelia, we observe a singular distribution of bond lengths, consistent with the one
found in the vertex model. This result raises the intriguing possibility that non-linear collective effects may
be important in tissues, and suggests further empirical tests. Yet, active forces and cell divisions or
extrusions could affect the relationship between geometry and flow properties at shear rates comparable or
smaller than cell division and extrusion rates [3, 11]. Extending our results to this flow regime will require
incorporating these active processes. From a theoretical perspective, how the density of weak spots depends
on stress in the presence of noise—even a simple thermal noise—is not well understood in amorphous
solids, and is just starting to be investigated [11, 70]. In this light, it would be important to study in the
future how different kinds of noise affect the flow curve and the distribution P(L) in the vertex model.

Secondly, despite the fact that the energy functional of the vertex model is more complex than that of
usual particulate materials (in which interaction can be radially symmetric), the relationship between
geometry and the presence of weak spots is much simpler in the vertex model. Outstanding questions in the
context of amorphous materials, such as predicting how amorphous solids break by forming shear bands in
which most plastic events occur, are hampered by the difficulty of measuring the distribution of weak spot
with small x [17–21]. The vertex model may thus be ideal to understand the universal aspects by which
amorphous materials break and flow.
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Appendix A. Vertex model parameters

We used the following parameter values in most simulations:

• Kc = 10

• Λb = −11
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• A0,c and Γc were always chosen so that p0 = −Λb/(2Γc
√

A0,c) = 11/(2
√

3
√

3/2) ≈ 3.41 is constant
throughout the network.

• ν = 1

Any change of parameters in a particular simulation is explicitly listed below.

Appendix B. T1 transition implementation

When a bond length becomes smaller than a threshold value εT1 a T1 transitions is attempted: old bond and
corresponding vertices are destroyed and new ones are created, then forces on the new bond are computed
and T1 transition is allowed if the tension in the new bond is positive (forces are stretching the new).
Otherwise, the T1 transition is canceled and the network is reverted to the original state. The choice of εT1 is
specified for particular simulations below. To avoid the possibility of an extrusion we do not allow bond loss
by T1 transition for cells with 3 neighbors.

Appendix C. Cell size polydispersity

In the flow simulations we avoided crystallization and shear banding by introducing cell size polydispersity:
preferred cell areas A0,c are uniformly distributed on the interval [Ā0,c/2, 3Ā0,c/2], where the mean preferred
cell area Ā0,c = 3

√
3/2 corresponds to size of regular hexagons before initial network randomization.

Parameter Γc was then chosen so that all cells have the same value of p0. Finally, we set Kc = 40.

Appendix D. Isotropic disordered networks

To create isotropic disordered networks, we first create a hexagonal network with bond length l = 1. The
energy function parameters are then set so that the network is in the solid phase p0 ≈ 3.7, but close to the
transition point p∗0 = 3.81 [38]. The parameters used are:

• Kc = 1

• Λb = −12

• Δt = 5 × 10−4

• εT1 = 5 × 10−4

For the randomization process we introduce fluctuations of the bond tension Λ independently in each
bond by simulating its dynamics as a time-discretised Ornstein–Uhlenbeck process:

Λ(t + δt) = Λ(t) − k(Λ(t) − Λ0) + ξ
√
δt, (D1)

where Λ0 = −12, δt = 10−2, k = 1 and ξ a random variable taken from a normal distribution N (0, 1).
Networks are evolved for tr = 50, then fluctuations are frozen and the network is relaxed for time 0.5.

Finally, network parameters are set to simulation values and networks are further relaxed over time using
εT1 = 10−4 until the net force on any vertex was below εF = 10−4.

Appendix E. Stress redistribution by a T1 transition

Results of the stress redistribution from a T1 event were obtained from an N = 2500 network. After initial
relaxation (until net force on any vertex is below εF = 10−5) 50 bonds of length l < 0.1 were selected
randomly. Each of these bonds was shrunk below the T1 threshold. If the tension in the newly formed bond
was negative (so that T1 transition would revert back, see appendix A) the bond was not considered,
otherwise the T1 was performed and the network was relaxed (with εF = 10−4) and shear stress change for
each cell was recorded. We defined cell position as the position of its center of mass and the position was
recorded in a coordinate system centered at the middle of the original bond that was selected and whose
x-axis was aligned with the original bond direction. Finally, we obtained the average shear stress change in
space by performing a cell area-weighted average in spatial bins.

Appendix F. Direct measurement of P(x)

In a subset of isotropic disordered networks each bond of length L < 0.5 was selected and constrained to be
of length Lc = 10−6. With this constraint on the bond, the network is then relaxed (until the net force on

9
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Figure 6. (a) and (b) Values of exponent θ obtained by fitting cumulative bond length distribution in isotropic networks and
steady state networks, respectively, using different values of lower limit l of data range. Values of the effective exponent θeff .

obtained by fitting the cumulative distribution of bond lengths in experimental data. Subplots (c) and (e) show the values of the
exponent in pupal wigs and wing discs, respectively. Subplots (d) and (f) show in purple choices of data limits for which the
exponent value falls in the range 0.7–0.9 in pupal wigs and wing discs, respectively.

any vertex was below εF = 10−3). Once the relaxation is over, the magnitude of the force acting on the
vertices of the constrained bond is recorded as x, as well as network energy change ΔE.

Appendix G. Steady state shear flow

We apply simple shear strain to a network at each time-step using an affine transformation of all vertex
positions:

Δxα =
yα
Ly

Δγ, (G1)

10
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where (xα, yα) are coordinates of vertex α, Δγ is strain increment, and Ly simulation box size in y direction.
The applied strain rate γ̇ = Δγ/Δt was always constant during a simulation. T1 transition threshold was
εT1 = 10−2 and simulation time step Δt = 10−3.

Appendix H. Isotropic θ

We determined the range of values corresponding to this exponent by fitting cumulative bond length
distribution obtained from 50 isotropic networks of size N = 2500, which exhibit a broader range of scaling
than N = 400 networks. We performed the power law fit on a range of data [l, 0.2] with varying lower limit
l as shown in figure 6(a). We find that for values of lower limit l in the range [0.01, 0.05] the exponent θ
varies between 0.5 and 0.60.

Appendix I. Transient θeff.
L

We fitted the effective exponent on cumulative distribution of adjusted bond lengths Lr = L − εT1 in the
range [0.03, 0.3], accumulated from 700 realisations obtained in N = 400 networks at strain rate γ̇ = 10−4,
recorded at strain resolution δγ1 = 0.02. The plot in figure 3(c) was obtained by averaging the results in
windows of width δγ2 = 0.1 with the shaded regions indicating the corresponding standard deviation in
each window.

Appendix J. Steady state θ

Cumulative bond length distribution of adjusted bond lengths Lr = L − εT1 shown in figure 3(d) of the
main text are obtained from 1400 networks at strain beyond 5 taken at strain intervals Δγ = 0.02. For the
lowest strain rate γ̇ = 5 × 10−5 we fitted a power law on a range of data [l, 0.3] with varying lower limit l as
shown in figure 6(b). We find that for values of lower limit l in the range [0.02, 0.05] the exponent θ varies
between 0.56 and 0.77.

Appendix K. Effective exponent in experimental data

To determine the effective exponent θeff.
L in experimental data we fitted a power law to the cumulative

distribution of bond lengths. We vary the fitting range to estimate confidence interval of the fits and we find
that in most cases fitted exponents fall in the range 0.7 < θeff.

L < 0.9, as shown in figures 6(c)–(f).
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