Abstract

In the last decade, halide perovskites have emerged as new semiconductors that revolutionize the photovoltaic field. Among this family of materials, all-inorganic halide perovskites are becoming a research paradigm because of their outstanding photophysical properties combined with the potential of long-term stabilities against moisture and thermal stresses in practical applications. By forming high-quality inorganic halide perovskite thin films and stabilizing the three-dimensional perovskite phases, in the past few years, the state-of-the-art inorganic perovskite solar cells have achieved a power conversion efficiency of 20.37% and a promising long-term operation stability. In this review, based on the latest research progress of inorganic halide perovskites for photovoltaics, we summarized (1) the crystal structural, optical, and photophysical properties of materials; (2) the film formation methods; and (3) the stabilization strategies of inorganic perovskite phase, to provide useful guideline for fabricating devices with further enhanced performance and stability, and promoting commercial applications.

Details

Actions