Heated tipping-bucket (TB) gauges are used broadly in national weather monitoring networks, but their performance for the measurement of solid precipitation has not been well characterized. Manufacturer-provided TB gauges were evaluated at five test sites during the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE), with most gauge types tested at more than one site. The test results were used to develop and evaluate adjustments for the undercatch of solid precipitation by heated TB gauges. New methods were also developed to address challenges specific to measurements from heated TB gauges. Tipping-bucket transfer functions were created specifically to minimize the sum of errors over the course of the adjusted multiseasonal accumulation. This was based on the hypothesis that the best transfer function produces the most accurate long-term precipitation records, rather than accurate catch efficiency measurements or accurate daily or hourly precipitation measurements. Using this new approach, an adjustment function derived from multiple gauges was developed that performed better than traditional gauge-specific and multigauge catch efficiency derived adjustments. Because this new multigauge adjustment was developed using six different types of gauges tested at five different sites, it may be applicable to solid precipitation measurements from unshielded heated TB gauges that were not evaluated in WMO-SPICE. In addition, this new method of optimizing transfer functions may be useful for other types of precipitation gauges, as it has many practical advantages over the traditional catch efficiency methods used to derive undercatch adjustments.