Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Realization of a $CQ_3$ Qubit: energy spectroscopy and coherence
 
research article

Realization of a $CQ_3$ Qubit: energy spectroscopy and coherence

Kratochwil, Benedikt
•
Koski, Jonne V.
•
Landig, Andreas J.
Show more
February 22, 2021
Physical Review Research

The energy landscape of a single electron in a triple quantum dot can be tuned such that the energy separation between ground and excited states becomes a flat function of the relevant gate voltages. These so-called sweet spots are beneficial for charge coherence, since the decoherence effects caused by small fluctuations of gate voltages or surrounding charge fluctuators are minimized. We propose a new operation point for a triple quantum dot charge qubit, a so-called $CQ_3$-qubit, having a third order sweet spot. We show strong coupling of the qubit to single photons in a frequency tunable high-impedance SQUID-array resonator. In the dispersive regime we investigate the qubit linewidth in the vicinity of the proposed operating point. In contrast to the expectation for a higher order sweet spot, we there find a local maximum of the linewidth. We find that this is due to a non-negligible contribution of noise on the quadrupolar detuning axis not being in a sweet spot at the proposed operating point. While the original motivation to realize a low-decoherence charge qubit was not fulfilled, our analysis provides insights into charge decoherence mechanisms relevant also for other qubits.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevResearch.3.013171.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.42 MB

Format

Adobe PDF

Checksum (MD5)

29b766aa2cf8a8cbb5e5d48bf5fb528d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés