Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics
 
research article

Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics

Knapp, Julia L. A.
•
von Freyberg, Jana  
•
Studer, Bjørn
Show more
May 15, 2020
Hydrology and Earth Systems Sciences

Studying the response of streamwater chemistry to changes in discharge can provide valuable insights into how catchments store and release water and solutes. Previ- ous studies have determined concentration–discharge (cQ) relationships from long-term, low-frequency data of a wide range of solutes. These analyses, however, provide little in- sight into the coupling of solute concentrations and flow dur- ing individual hydrologic events. Event-scale cQ relation- ships have rarely been investigated across a wide range of solutes and over extended periods of time, and thus little is known about differences and similarities between event-scale and long-term cQ relationships. Differences between event- scale and long-term cQ behavior may provide useful infor- mation about the processes regulating their transport through the landscape. Here we analyze cQ relationships of 14 different solutes, ranging from major ions to trace metals, as well as electri- cal conductivity, in the Swiss Erlenbach catchment. From a 2-year time series of sub-hourly solute concentration data, we determined 2-year cQ relationships for each solute and compared them to cQ relationships of 30 individual events. The 2-year cQ behavior of groundwater-sourced solutes was representative of their cQ behavior during hydrologic events. Other solutes, however, exhibited very different cQ patterns at the event scale and across 2 consecutive years. This was particularly true for trace metals and atmospheric and/or bio- logically active solutes, many of which exhibited highly vari- able cQ behavior from one event to the next. Most of this inter-event variability in cQ behavior could be explained by factors such as catchment wetness, season, event size, input concentrations, and event-water contributions. We present an overview of the processes regulating different groups of so- lutes, depending on their origin in and pathways through the catchment. Our analysis thus provides insight into controls on solute variations at the hydrologic event scale.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

hess-24-2561-2020(1).pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

3 MB

Format

Adobe PDF

Checksum (MD5)

7b073cdef4e11a065d614731a04d606a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés