Files

Abstract

Studying the response of streamwater chemistry to changes in discharge can provide valuable insights into how catchments store and release water and solutes. Previ- ous studies have determined concentration–discharge (cQ) relationships from long-term, low-frequency data of a wide range of solutes. These analyses, however, provide little in- sight into the coupling of solute concentrations and flow dur- ing individual hydrologic events. Event-scale cQ relation- ships have rarely been investigated across a wide range of solutes and over extended periods of time, and thus little is known about differences and similarities between event-scale and long-term cQ relationships. Differences between event- scale and long-term cQ behavior may provide useful infor- mation about the processes regulating their transport through the landscape. Here we analyze cQ relationships of 14 different solutes, ranging from major ions to trace metals, as well as electri- cal conductivity, in the Swiss Erlenbach catchment. From a 2-year time series of sub-hourly solute concentration data, we determined 2-year cQ relationships for each solute and compared them to cQ relationships of 30 individual events. The 2-year cQ behavior of groundwater-sourced solutes was representative of their cQ behavior during hydrologic events. Other solutes, however, exhibited very different cQ patterns at the event scale and across 2 consecutive years. This was particularly true for trace metals and atmospheric and/or bio- logically active solutes, many of which exhibited highly vari- able cQ behavior from one event to the next. Most of this inter-event variability in cQ behavior could be explained by factors such as catchment wetness, season, event size, input concentrations, and event-water contributions. We present an overview of the processes regulating different groups of so- lutes, depending on their origin in and pathways through the catchment. Our analysis thus provides insight into controls on solute variations at the hydrologic event scale.

Details

Actions

Preview