Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Development of Standardized Fetal Progenitor Cell Therapy for Cartilage Regenerative Medicine: Industrial Transposition and Preliminary Safety in Xenogeneic Transplantation
 
research article

Development of Standardized Fetal Progenitor Cell Therapy for Cartilage Regenerative Medicine: Industrial Transposition and Preliminary Safety in Xenogeneic Transplantation

Laurent, Alexis
•
Abdel-Sayed, Philippe
•
Ducrot, Aurélie
Show more
February 9, 2021
Biomolecules

Diverse cell therapy approaches constitute prime developmental prospects for managing acute or degenerative cartilaginous tissue affections, synergistically complementing specific surgical solutions. Bone marrow stimulation (i.e., microfracture) remains a standard technique for cartilage repair promotion, despite incurring the adverse generation of fibrocartilagenous scar tissue, while matrix-induced autologous chondrocyte implantation (MACI) and alternative autologous cell-based approaches may partly circumvent this effect. Autologous chondrocytes remain standard cell sources, yet arrays of alternative therapeutic biologicals present great potential for regenerative medicine. Cultured human epiphyseal chondro-progenitors (hECP) were proposed as sustainable, safe, and stable candidates for chaperoning cartilage repair or regeneration. This study describes the development and industrial transposition of hECP multi-tiered cell banking following a single organ donation, as well as preliminary preclinical hECP safety. Optimized cell banking workflows were proposed, potentially generating millions of safe and sustainable therapeutic products. Furthermore, clinical hECP doses were characterized as non-toxic in a standardized chorioallantoic membrane model. Lastly, a MACI-like protocol, including hECPs, was applied in a three-month GLP pilot safety evaluation in a caprine model of full-thickness articular cartilage defect. The safety of hECP transplantation was highlighted in xenogeneic settings, along with confirmed needs for optimal cell delivery vehicles and implantation techniques favoring effective cartilage repair or regeneration

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

biomolecules-11-00250-v3.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

38.74 MB

Format

Adobe PDF

Checksum (MD5)

32b0841311c574c7f8c2410205507142

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés