Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. The influence of loading path on fault reactivation: a laboratory perspective
 
conference presentation

The influence of loading path on fault reactivation: a laboratory perspective

Giorgetti, Carolina  
•
Violay, Marie  
2020
EGU General Assembly 2020

Despite natural faults are variably oriented to the Earth's surface and to the local stress field, the mechanics of fault reactivation and slip under variable loading paths (sensu Sibson, 1993) is still poorly understood. Nonetheless, different loading paths commonly occur in natural faults, from load-strengthening when the increase in shear stress is coupled with an increase in normal stress (e.g., reverse faults in absence of the fluid pressure increase) to load-weakening when the increase in shear stress is coupled with a decrease in normal stress (e.g., normal faults). According to the Mohr-Coulomb theory, the reactivation of pre-existing faults is only influenced by the fault orientation to the stress field, the fault friction, and the principal stresses magnitude. Therefore, the stress path the fault experienced is often neglected when evaluating the potential for reactivation. Yet, in natural faults characterized by thick, incohesive fault zone and highly fractured damage zone, the loading path could not be ruled out. Here we propose a laboratory approach aimed at reproducing the typical tectonic loading paths for reverse and normal faults. We performed triaxial saw-cut experiments, simulating the reactivation of well-oriented (i.e., 30° to the maximum principal stress) and misoriented (i.e., 50° to the maximum principal stress), normal and reverse gouge-bearing faults under dry and water-saturated conditions. We find that load-strengthening versus load-weakening path results in clearly different hydro-mechanical behavior. Particularly, prior to reactivation, reverse faults undergo compaction even at differential stresses well below the value required for reactivation. Contrarily, normal faults experience dilation, most of which occurs only near the differential stress values required for reactivation. Moreover, when reactivating at comparable normal stress, normal faults (load-weakening path) are more prone to slip seismically than reverse fault (load-strengthening path). Indeed, the higher mean stress that normal fault experienced before reactivation compacts more efficiently the gouge layer, thus increasing the fault stiffness and favoring seismic slip. This contrasting fault zone compaction and dilation prior to reactivation may occur in different natural tectonic settings, affecting the fault hydro-mechanical behavior. Thus, to take into account the loading path the fault experienced is fundamental in evaluating both natural and induced fault reactivation and the related seismic risk assessment.

  • Details
  • Metrics
Type
conference presentation
DOI
10.5194/egusphere-egu2020-15091
Author(s)
Giorgetti, Carolina  
Violay, Marie  
Date Issued

2020

Written at

EPFL

EPFL units
LEMR  
Event nameEvent placeEvent date
EGU General Assembly 2020

Online conference

May 4-8, 2020

Available on Infoscience
February 15, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/175291
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés