Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Effect of normal and shear loading on the hydraulic transport properties of calcite bearing faults with customized roughness
 
conference poster not in proceedings

Effect of normal and shear loading on the hydraulic transport properties of calcite bearing faults with customized roughness

Acosta, Mateo  
•
Maye, Robin
•
Violay, Marie  
2020
AGU Fall Meeting 2020

Understanding fluid flow in rough fractures is of high importance to large scale geologic processes and to most anthropogenic geo-energy activities. Here, we conducted fluid transport experiments on Carrara marble fractures with a novel customized surface topography. Transmissivity measurements were conducted under normal stresses from 20 to 50 MPa and shear stresses from 0 to 30 MPa. An open source numerical procedure was developed to simulate normal contact and fluid flow through fractures with complex geometries. It was validated towards experiments. Using it, we isolated the effects of roughness parameters on fracture fluid flow. Under normal loading, we find that i) the transmissivity decreases with normal loading and is strongly dependent on fault surface geometry ii) the standard deviation of heights (hrms) and macroscopic wavelength of the surface asperities control fracture transmissivity. Transmissivity evolution is non-monotonic, with more than 4 orders of magnitude difference for small variations of macroscopic wavelength and roughness. Reversible elastic shear loading has little effect on transmissivity, it can increase or decrease depending on contact geometry and overall stress state on the fault. Irreversible shear displacement (up to 1 mm offset) slightly decreases transmissivity and its variation with irreversible shear displacements can be predicted numerically and geometrically at low normal stress only. Finally, irreversible changes in surface roughness (plasticity and wear) due to shear displacement result in a permanent decrease of transmissivity when decreasing differential stress. Generally, reduction of a carbonate fault’s effective stress increases its transmissivity while inducing small shear displacements doesn’t.

  • Details
  • Metrics
Type
conference poster not in proceedings
Author(s)
Acosta, Mateo  
Maye, Robin
Violay, Marie  
Date Issued

2020

Written at

EPFL

EPFL units
LEMR  
Event nameEvent placeEvent date
AGU Fall Meeting 2020

Online

December 1-17, 2020

Available on Infoscience
January 27, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/174981
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés