Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. FeGAN: Scaling Distributed GANs
 
conference paper

FeGAN: Scaling Distributed GANs

Guerraoui, Rachid  
•
Guirguis, Arsany  
•
Kermarrec, Anne-Marie  
Show more
December 10, 2020
Proceedings of the 21st International Middleware Conference
21st International Middleware Conference

Existing approaches to distribute Generative Adversarial Networks (GANs) either (i) fail to scale for they typically put the two components of a GAN (the generator and the discriminator) on different machines, inducing significant communication overhead, or (ii) they face GAN training specific issues, exacerbated by distribution. We propose FeGAN, the first middleware for distributing GANs over hundreds of devices addressing the issues of mode collapse and vanishing gradients. Essentially, we revisit the idea of Federated Learning, co-locating a generator with a discriminator on each device (addressing the scaling problem) and having a server aggregate the devices' models using balanced sampling and Kullback-Leibler (KL) weighting, mitigating training issues and boosting convergence. Through extensive experiments, we show that FeGAN generates high-quality dataset samples in a scalable and devices' heterogeneity tolerant manner. In particular, FeGAN achieves up to 5× throughput gain with 1.5× less bandwidth compared to the state-of-the-art GAN distributed approach (named MD-GAN), while scaling to at least one order of magnitude more devices. We demonstrate that FeGAN boosts training by 2.6× w.r.t. a baseline application of Federated Learning to GANs while preventing training issues.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FeGAN.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

Copyright

Size

4.54 MB

Format

Adobe PDF

Checksum (MD5)

8b3a67c9dd477976d28ac5630180e4d4

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés