Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Amoebocytes facilitate efficient carbon and nitrogen assimilation in the Cassiopea -Symbiodiniaceae symbiosis
 
research article

Amoebocytes facilitate efficient carbon and nitrogen assimilation in the Cassiopea -Symbiodiniaceae symbiosis

Lyndby, Niclas Heidelberg  
•
Rädecker, Nils  
•
Bessette, Sandrine  
Show more
December 16, 2020
Proceedings of the Royal Society B: Biological Sciences

The upside-down jellyfish Cassiopea engages in symbiosis with photosynthetic microalgae that facilitate uptake and recycling of inorganic nutrients. By con- trast to most other symbiotic cnidarians, algal endosymbionts in Cassiopea are not restricted to the gastroderm but are found in amoebocyte cells within the mesoglea. While symbiont-bearing amoebocytes are highly abundant, their role in nutrient uptake and cycling in Cassiopea remains unknown. By combining isotopic labelling experiments with correlated scanning electron microscopy, and Nano-scale secondary ion mass spectrometry (NanoSIMS) imaging, we quantified the anabolic assimilation of inorganic carbon and nitro- gen at the subcellular level in juvenile Cassiopea medusae bell tissue. Amoebocytes were clustered near the sub-umbrella epidermis and facilitated efficient assimilation of inorganic nutrients. Photosynthetically fixed carbon was efficiently translocated between endosymbionts, amoebocytes and host epidermis at rates similar to or exceeding those observed in corals. The Cassiopea holobionts efficiently assimilated ammonium, while no nitrate assimilation was detected, possibly reflecting adaptation to highly dynamic environmental conditions of their natural habitat. The motile amoebocytes allow Cassiopea medusae to distribute their endosymbiont population to optimize access to light and nutrients, and transport nutrition between tissue areas. Amoebocytes thus play a vital role for the assimilation and translocation of nutrients in Cassiopea, providing an interesting new model for studies of metabolic interactions in photosymbiotic marine organisms.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

rspb.2020.2393-3.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.41 MB

Format

Adobe PDF

Checksum (MD5)

b659776951862699066c391811cac4a6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés