Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Technical note: Evaluation of a low-cost evaporation protection method for portable water samplers
 
research article

Technical note: Evaluation of a low-cost evaporation protection method for portable water samplers

von Freyberg, Jana  
•
Knapp, Julia L. A.
•
Rucker, Andrea
Show more
December 8, 2020
Hydrology And Earth System Sciences

Automated field sampling of streamwater or precipitation for subsequent analysis of stable water isotopes (H-2 and O-18) is often conducted with off-the-shelf automated samplers. However, when water samples are stored in the field for days and weeks in open bottles inside autosamplers, their isotopic signatures can be altered by evaporative fractionation and vapor mixing. We therefore designed an evaporation protection method which modifies autosampler bottles using a syringe housing and silicone tube, and we tested whether this method reduces evaporative fractionation and vapor mixing in water samples stored for up to 24 d in 6712 full-size portable samplers (Teledyne ISCO, Lincoln, USA). Laboratory and field tests under different temperature and humidity conditions showed that water samples in bottles with evaporation protection were far less altered by evaporative fractionation and vapor mixing than samples in conventional open bottles. Our design is a cost-efficient approach to upgrade the 1L sample bottles of the ISCO autosamplers, allowing secure water sample collection in warm and dry environments. Our design can be readily adapted (e.g., by using a different syringe size) to fit the bottles used by many other field autosamplers.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

hess-24-5821-2020.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

6.95 MB

Format

Adobe PDF

Checksum (MD5)

dec0cc94747705465cf75e2ce20c9194

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés