Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Microfluidic systems for cancer diagnostics
 
review article

Microfluidic systems for cancer diagnostics

Garcia-Cordero, Jose L.
•
Maerkl, Sebastian J.  
October 1, 2020
Current Opinion In Biotechnology

Although not employed in the clinic as of yet, microfluidic systems are likely to become a key technology for cancer diagnostics and prognosis. Microfluidic devices have been developed for the analysis of various biomarkers including circulating tumor cells, cell-free DNA, exosomes, and proteins, primarily in liquid biopsies such as serum, plasma, and whole blood, avoiding the need for tumor tissue biopsies. Here, we summarize microfluidic technological advances that are used in cancer diagnosis, prognosis, and to monitor its progression and recurrence, that will likely lead to personalized therapies. In some cases, integrated microfluidic technologies, coupled with biosensors, are proving to be more sensitive and precise in the detection of cancer biomarkers than conventional assays. Based on the current state-of-the-art and the rapid progress over the past decade, we also briefly discuss the next evolutionary steps that these technologies are likely to take.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2020_Garcia_CuOpBio.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

Copyright

Size

1.22 MB

Format

Adobe PDF

Checksum (MD5)

3730f35c84efa94ea68f11d1833c3047

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés