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Introduction

Our aim:
1. Design interpretable modeling 

method
2. Predict the weather with deep neural 

network

Our motivation:
1. Deep learning method cost less 

computation power than NWP models
2. Can help us understand the impact of 

initial conditions
3. Can be used on other atmospheric 

problem
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GionataGhiggi

ResBlock

ResBlock

ResBlock

ResBlock

Convolution

Convolution
Activation

Convolution
Activation

1x1 Convolution
Generalized Spherical Pooling

Generalized Spherical Unpooling

Data

Skip Connection

ResBlock

Introduction – U Net
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t	+	Δt t	+	2Δt t	+	3Δt

Δt =	6	hours

Introduction – Autoregressive model

GionataGhiggi
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t	+	Δt t	+	2Δt t	+	3Δt

Δt =	6	hours

Introduction – Autoregressive model

GionataGhiggi
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t	+	Δt t	+	2Δt t	+	3Δt

Δt =	6	hours

Loss func)on = MSE(     ,     )

Predictions
Observations

Introduction – Autoregressive model

GionataGhiggi
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Input at time t
1. geopotential at 500 hPa (Z500)
2. temperature at 850 hPa (T850)

Additional feature at time t:
1. top-of-atmosphere solar radiation
2. orography 
3. land-sea mask 
4. latitude
5. soil type

Predict at t	+	Δt
1. geopotential at 500 hPa (Z500)
2. temperature at 850 hPa (T850)

Introduction – Input/Output
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𝑅𝑀𝑆𝐸 =
1
𝑁
)
!"#

$

𝑝! −𝑜! %

• 𝑝! = predicted value at location 𝑛
• 𝑜! = observed value at location n
• Measure the distance between prediction and observation 
• Lower is better 

Introduction – Metric

Rasp et al., 2020
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Results in this presentation:
• Weather Benchmark
• Region: Global
• Spatial resolution: 5.625° (approx. 600 km) 
• Temporal resolution: 6h

Currently:
• ECMWF ER5

Introduction – Dataset



Geometric projection
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Geometric projection

Project the sphere as planar

Longitude

t = 0 t = 5 days

a) Direct prediction

b) Iterative prediction
t = 0 t = 6 hours t = 5 days

La
tit

ud
e

Channels = 
Variables x
Levels

Figure 1. Schematic of data-driven weather forecasting. a) Example of direct weather prediction for 5 days lead time. The input to the neural

network are fields on a latitude-longitude grid. The fields can be several levels of the same variable and/or different variables. The goal is to

predict the same fields some time ahead. b) Iterative forecasts are created from data-driven models trained on a shorter lead time, for example

6 hours, which are then iteratively called up to the required forecast lead time.

used, a fully connected neural network and a spatially localized network, similar to a convolutional neural network (CNN).

After training they then created iterative forecasts up to 120 h lead time for 10 month validation period. They compared their

data-driven forecasts to an operational NWP model and the same model run at a spatial resolution comparable to the data-

driven method. One interesting detail is that their networks predict the difference from one time step to the next, instead of the

absolute field. To create these iterative forecasts, they use a third-order Adams-Bashford explicit time-stepping scheme. The

CNN predicting only geopotential performed best but was unable to beat the low-resolution physical baseline.

2.2 Scher (2018) and Scher and Messori (2019b)

These two studies addressed the issue of data-driven weather forecasting in a simplified reality setting. Long runs of simplified

General Circulation Models (GMCs) were used as “reality”. Neural networks were trained to predict the model fields several

days ahead. The neural network architecture are CNNs with an encoder-decoder setup. They take as input the instantaneous

3D model fields at one timestep, and output the same model fields at some time later. In Scher (2018), a separate network was

trained for each lead-time up to 14 days. Scher and Messori (2019b) trained only on 1-day forecasts, and constructed longer

forecasts iteratively. Interestingly, networks trained to directly predict a certain forecast time, e.g. 5 days, outperformed iterative

networks. The forecasts were evaluated using the root mean squared error and the anomaly correlation coefficient of Z500 and

4

Figure: Rasp et al., 2020

☹:
1. Discontinuity on borders
2. Imbalanced projection

– Planar
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Project the sphere as cylinder

Figure: Rasp et al., 2020

☹:
1. Discontinuity on borders
2. Imbalanced projection

Geometric projection – Cylinder
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How much improvement?

How to solve imbalanced projection?

Geometric projection – Cylinder



Spherical modeling
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Spherical modeling

• Directly modeling on spherical sampling without projection
• Using graph to represent the sphere
• Graph nodes given by sampling points

📓

• Can approximate any 3D object
• Approximation quality is proportional to number of nodes.
• Solving imbalance by using an even sampling (e.g., HEALPix)
• Adaptive to any levels of resolution

✅
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– Sampling methodsSpherical modeling

GionataGhiggi
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𝑘Nearest Neighbors (kNN) graph
• Each nodes is connected to 𝑘 nearest neighbors undirectedly. 
• If we have 𝑁 nodes, then we have 𝑘𝑁 edges.

𝑘 = 8

– Build the graphSpherical modeling

https://healpix.sourceforge.io/
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Graph convolution
1. Fourier transform to frequency domain
2. Multiply with (learnable) kernel function
3. Inverse Fourier transform

Graph pooling / unpooling
1. Max / Average aggregation 
• Not applicable to all spherical sampling
• Easy to implement

Unpooling

Pooling

Unpooling

Pooling

– Computation on the graphSpherical modeling

2. General interpolation
• Applicable to all spherical sampling

https://healpix.sourceforge.io/



Accuracy and efficiency
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Accuracy and efficiency 

For fair comparison, the HEALPix data are interpolated from planar/cylinder data
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- Scalability
Scalability matters:
• In real life, spatial resolution can be less than 50 km (Large graph)
• The model need to handle real case efficiently (One of our motivation)

Accuracy and efficiency 
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- Scalability on 𝑵Accuracy and efficiency 
Scalability matters:
• In real life, spatial resolution can be less than 50 km (Large graph)
• The model need to handle real case efficiently (One of our motivation)
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- Scalability on 𝒌Accuracy and efficiency 
Scalability matters:
• In real life, spatial resolution can be less than 50 km (Large graph)
• The model need to handle real case efficiently (One of our motivation)
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What kind of infrastructure we need to run the following model?

• 𝑁 = 12288 (approx. 200km)
• 𝑘 = 20
• Process 15 graphs in parallel
or

• 𝑁 = 196608 (approx. 50km)
• 𝑘 = 20
• Process 1 graph

❓

😉

Answer: Single GTX 1080Ti with 8GB free graphical memory

Multiple GPUs can
• Process larger graph
• Process larger batch
• Accelerate the learning

- CostsAccuracy and efficiency 
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Conclusion until now

1. Spherical modeling better approximates the earth
• No information lost on borders
• Graph evenly represents balanced sampling

2. The approximation quality can be adjusted by the number of sampling points
• More sampling points mean smaller polyhedrons to approximate sphere

3. The computation complexity increases linearly
• The ability to handle high resolution data

4. Lower requirements for infrastructures than classical NWP.
• Single GPU can run the experiments efficiently
• Multiple GPUs are capable of high-resolution simulation.
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