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Introduction

Our motivation:

1.
2.
3.

Deep learning method cost less
computation power than NWP models
Can help us understand the impact of
initial conditions

Can be used on other atmospheric
problem

Our aim:

1.

2.

Design interpretable modeling
method

Predict the weather with deep neural
network
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Introduction - U Net
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Generalized Spherical Pooling

Generalized Spherical Unpooling

Skip Connection
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*"" " Introduction - Autoregressive model
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Introduction - Input/Output

Input at time t Predict at t+ At
1. geopotential at 500 hPa (Z500) 1. geopotential at 500 hPa (Z500)
2. temperature at 850 hPa (T850) 2. temperature at 850 hPa (T850)

Additional feature at time t:
top-of-atmosphere solar radiation
orography

land-sea mask

latitude

soil type

abwd~
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“""L " Introduction - Metric
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1 N
RMSE = | <) (5 — on)?
n=0

pn, = predicted value at location n

0, = observed value at location n

Measure the distance between prediction and observation
Lower is better

B ML4Earth

Rasp etal., 2020
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Introduction - Dataset

Results in this presentation:

*  Weather Benchmark

« Region: Global

« Spatial resolution: 5.625° (approx. 600 km)
» Temporal resolution: 6h

Currently:
- ECMWEF ER5
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Geometric projection
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Geometric projection - Planar
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1. Discontinuity on borders
2. Imbalanced projection

Project the sphere as planar

B ML4Earth

Figure: Rasp etal., 2020



=PrL

-
w

Geometric projection - Cylinder
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2: Imbalanced projection

Project the sphere as cylinder
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Figure: Rasp etal., 2020
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Geometric projection - Cylinder

How much improvement?

T850
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Spherical modeling
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Spherical modeling

S

Directly modeling on spherical sampling without projection
Using graph to represent the sphere
Graph nodes given by sampling points

Can approximate any 3D object

Approximation quality is proportional to number of nodes.
Solving imbalance by using an even sampling (e.g., HEALPIXx)
Adaptive to any levels of resolution
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erical modeling - Sampling methods

Reduced Gaussian Grid

Healpix

-

—
-

-

—

1L

Auhb

Icosahedral

Equiangular Grid

Cubed Sphere
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Spherical modeling - Build the graph

k Nearest Neighbors (kNN) graph
Each nodes is connected to k nearest neighbors undirectedly.
If we have N nodes, then we have kN edges.

Haddad
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https://healpix.sourceforge.io/
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Spherical modeling - Computation on the graph

Graph convolution Graph pooling / unpooling <
1. Fourier transform to frequency domain Max / Average aggregation Z,
2. Multiply with (learmable) kernel function »  Not applicable to all spherical sampling &
3. Inverse Fourier transform « Easy to implement ;

2. General interpolation
*  Applicable to all spherical sampling

Unpooling

Pooling

B ML4Earth

https://healpix.sourceforge.io/
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- Accuracy and efficiency
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For fair comparison, the HEALPIx data are interpolated from planar/cylinder data
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" Accuracy and efficiency - Scalability

Scalability matters:
* Inreal life, spatial resolution can be less than 50 km (Large graph)
» The model need to handle real case efficiently (One of our motivation)

B ML4Earth
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" Accuracy and efficiency - Scalability on N

Scalability matters:

* Inreal life, spatial resolution can be less than 50 km (Large graph)
« The model need to handle real case efficiently (One of our motivation)
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Scalability matters:
In real life, spatial resolution can be less than 50 km (Large graph)

Forward time comparison (median)

The model need to handle real case efficiently (One of our motivation)
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""" Accuracy and efficiency - Costs

What kind of infrastructure we need to run the following model?

* N = 12288 (approx. 200km)

« k=20
? » Process 15 graphs in parallel
or
* N = 196608 (approx. 50km)
e k=20

* Process 1 graph

Answer: Single GTX 1080Ti with 8GB free graphical memory

© Multiple GPUs can
* Process larger graph
* Process larger batch
* Accelerate the learning

B ML4Earth
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Conclusion until now

Spherical modeling better approximates the earth

*  No information lost on borders

»  Graph evenly represents balanced sampling

The approximation quality can be adjusted by the number of sampling points
*  More sampling points mean smaller polyhedrons to approximate sphere
The computation complexity increases linearly

«  The ability to handle high resolution data

Lower requirements for infrastructures than classical NWP.

«  Single GPU can run the experiments efficiently

*  Multiple GPUs are capable of high-resolution simulation.
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