Abstract

Ozonation of secondary wastewater treatment plant effluent for the abatement of organic micropollutants requires an accurate process control, which can be based on monitoring ozone-induced changes in dissolved organic matter (DOM). This study presents a novel automated analytical system for monitoring changes in the electron donating capacity (EDC) and UV absorbance of DOM during ozonation. In a first step, a quantitative photometric EDC assay was developed based on electron-transfer reactions from phenolic moieties in DOM to an added chemical oxidant, the radical cation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS(center dot+)). The assay is highly sensitive (limit of quantification similar to 0.5 mg(DOC.)L(-1)) and EDC values of model DOM isolates determined by this assay were in good agreement with values determined previously by mediated electrochemical oxidation (slope = 1.01 +/- 0.07, R-2 = 0.98). In a second step, the photometric EDC measurement method was transferred onto an automated fluidic system coupled to a photometer (EDC analyzer). The EDC analyzer was then used to monitor changes in EDC and UV absorbance of secondary wastewater effluent treated with ozone. While both parameters exhibited a dose-dependent decrease, a more pronounced decrease in EDC as compared to UV absorbance was observed at specific ozone doses up to 0.4 mg(O3)center dot g(DOC)(-1). The concentration of 17 alpha-ethinylestradiol, a phenolic micropollutant with a high ozone reactivity, decreased proportionally to the EDC decrease. In contrast, abatement of less ozone-reactive micropollutants and bromate formation started only after a pronounced initial decrease in EDC. The on-line EDC analyzer presented herein will enable a comprehensive assessment of the combination of EDC and UV absorbance as control parameters for full-scale ozonation. (C) 2020 The Authors. Published by Elsevier Ltd.

Details