Files

Abstract

Understanding the mechanical behaviour of compacted bentonite upon re-saturation is of outmost importance in most designs of nuclear waste disposal repositories. The behaviour of bentonite is characterized by its stress-path dependency and it is typically interpreted on the basis of its microstructural interactions. Up to now, effective stress-based models have had limited success in reproducing consistently the main responses. Here a recently proposed model for the modelling of volumetric behaviour of compacted bentonites is extended to triaxial stress states. The model is formulated using a conventional effective stress expression and the degree of saturation. Because these two variables are directly related to the water retention, a suitable formulation for bentonites is used. The resulting equations are characterised by a high degree of hydro- mechanical couplings and a low number of material parameters, which can be obtained on the basis of well- established laboratory procedures. In order to demonstrate its capabilities, the model is used to simulate the behaviour of MX-80 bentonite for several stress paths under oedometric conditions. The emphasis is put on the process of parameter determination. The predictive capabilities of the model are also highlighted.

Details

Actions

Preview