How eigenmode self-interaction affects zonal flows and convergence of tokamak core turbulence with toroidal system size

Self-interaction is the process by which a microinstability eigenmode that is extended along the direction parallel to the magnetic field interacts non-linearly with itself. This effect is particularly significant in gyrokinetic simulations accounting for kinetic passing electron dynamics and is known to generate stationary E×B zonal flow shear layers at radial locations near low-order mode rational surfaces (Weikl et al. Phys. Plasmas, vol. 25, 2018, 072305). We find that self-interaction, in fact, plays a very significant role in also generating fluctuating zonal flows, which is critical to regulating turbulent transport throughout the radial extent. Unlike the usual picture of zonal flow drive in which microinstability eigenmodes coherently amplify the flow via modulational instabilities, the self-interaction drive of zonal flows from these eigenmodes are uncorrelated with each other. It is shown that the associated shearing rate of the fluctuating zonal flows therefore reduces as more toroidal modes are resolved in the simulation. In simulations accounting for the full toroidal domain, such an increase in the density of toroidal modes corresponds to an increase in the toroidal system size, leading to a finite system size effect that is distinct from the well-known profile shearing effect.


Published in:
Journal of Plasma Physics, 86, 5, 905860207
Year:
Sep 28 2020
Keywords:
Laboratories:


Note: The status of this file is: Anyone


 Record created 2020-10-12, last modified 2020-10-28

Fulltext:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)