Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Exploration of human cerebrospinal fluid: A large proteome dataset revealed by trapped ion mobility time-of-flight mass spectrometry
 
research article

Exploration of human cerebrospinal fluid: A large proteome dataset revealed by trapped ion mobility time-of-flight mass spectrometry

Macron, Charlotte
•
Lavigne, Regis
•
Galindo, Antonio Nunez
Show more
August 1, 2020
Data In Brief

Cerebrospinal fluid (CSF) is a biofluid in direct contact with the brain and as such constitutes a sample of choice in neu-rological disorder research, including neurodegenerative dis-eases such as Alzheimer or Parkinson. Human CSF has still been less studied using proteomic technologies compared to other biological fluids such as blood plasma or serum. In this work, a pool of "normal" human CSF samples was analysed using a shotgun proteomic workflow that combined removal of highly abundant proteins by immunoaffinity depletion and isoelectric focussing fractionation of tryptic peptides to alle-viate the complexity of the biofluid. The resulting 24 frac-tions were analysed using liquid chromatography coupled to a high-resolution and high-accuracy timsTOF Pro mass spec-trometer. This state-of-the-art mass spectrometry-based pro-teomic workflow allowed the identification of 3'174 proteins in CSF. The dataset reported herein completes the pool of the most comprehensive human CSF proteomes obtained so far. An overview of the identified proteins is provided based on gene ontology annotation. Mass and tandem mass spectra are made available as a possible starting point for further studies exploring the human CSF proteome. (c) 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ )

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S2352340920305989-main.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

554.5 KB

Format

Adobe PDF

Checksum (MD5)

85df2a84306e7e3e599b8fbe4e20b345

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés