DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation

Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.


Presented at:
NeurIPS 2020 34th Conference on Neural Information Processing Systems, Vancouver, Canada, December 6-12, 2020
Year:
Sep 29 2020
Keywords:
Laboratories:




 Record created 2020-09-29, last modified 2020-10-25


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)