Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor

The effects of high pulse intensity and chirp on two-dimensional electronic spectroscopy signals are experimentally investigated in the highly non-perturbative regime using atomic rubidium vapor as clean model system. Data analysis is performed based on higher-order Feynman diagrams and non-perturbative numerical simulations of the system response. It is shown that higher-order contributions may lead to a fundamental change of the static appearance and beating-maps of the 2D spectra and that chirped pulses enhance or suppress distinct higher-order pathways. We further give an estimate of the threshold intensity beyond which the high-intensity effects become visible for the system under consideration. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement


Published in:
Optics Express, 28, 18, 25806-25829
Year:
Aug 31 2020
Publisher:
Washington, OPTICAL SOC AMER
ISSN:
1094-4087
Keywords:




 Record created 2020-09-17, last modified 2020-10-26


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)