A scalable CRISPR/Cas9-based fluorescent reporter assay to study DNA double-strand break repair choice

Double-strand breaks (DSBs) are the most toxic type of DNA lesions. Cells repair these lesions using either end protection- or end resection-coupled mechanisms. To study DSB repair choice, we present the Color Assay Tracing-Repair (CAT-R) to simultaneously quantify DSB repair via end protection and end resection pathways. CAT-R introduces DSBs using CRISPR/Cas9 in a tandem fluorescent reporter, whose repair distinguishes small insertions/deletions from large deletions. We demonstrate CAT-R applications in chemical and genetic screens. First, we evaluate 21 compounds currently in clinical trials which target the DNA damage response. Second, we examine how 417 factors involved in DNA damage response influence the choice between end protection and end resection. Finally, we show that impairing nucleotide excision repair favors error-free repair, providing an alternative way for improving CRISPR/Cas9-based knock-ins. CAT-R is a high-throughput, versatile assay to assess DSB repair choice, which facilitates comprehensive studies of DNA repair and drug efficiency testing. Cells employ different repair pathways to repair DNA double strand breaks. Here, the authors develop a CRISPR/Cas9-dependent method to study choices in DNA repair called the Color Assay Tracing-Repair (CAT-R) which simultaneously measure outcomes of DSB repair via end-protection and end-resection pathways.


Published in:
Nature Communications, 11, 1, 4077
Year:
Aug 14 2020
ISSN:
2041-1723
Keywords:
Note:
This article is licensed under a Creative Commons Attribution 4.0 International License.


Note: The status of this file is: Anyone


 Record created 2020-09-12, last modified 2020-10-27

Final:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)