Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Inkjet Printing of Complex Soft Machines with Densely Integrated Electrostatic Actuators
 
research article

Inkjet Printing of Complex Soft Machines with Densely Integrated Electrostatic Actuators

Schlatter, Samuel  
•
Grasso, Giulio  
•
Rosset, Samuel
Show more
September 3, 2020
Advanced Intelligent Systems

A multimaterial inkjet printing method for integrated soft multifunctional machines is reported, combining dense arrays of electrostatic actuators, multilayer electrical routing, and complex networks of microfluidic channels in one printing process. Most additive manufacturing methods for soft robots are developed for devices driven by external fluidic pressure sources and are not suited to fabricate soft electrically driven actuators. To integrate electrostatic zipping actuators and microfluidics in stretchable soft machines without any rigid components, inks for sacrificial layers, dielectric elastomers, and compliant electrodes are developed herein, along with a unified printing process to print multilayer structures. Printed 2.5D stacks are transformed into fully functional 3D soft machines by inflating thin elastomer channels. Two demonstrators are reported, each consisting of seven printed layers: a flexible peristaltic pump and a compliant slug drive, inspired by the locomotion of slugs. The peristaltic pump has six integrated actuators, whereas the slug drive has 28 integrated actuators, generating a travelling wave used to transport objects. These soft devices demonstrate how inkjet printing produces densely packed high‐voltage actuators, including vias for electrical routing. Sensors and logic may be printed in the future to produce more complex autonomous soft machines.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

full text inkjet printing complex soft machines.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

6.36 MB

Format

Adobe PDF

Checksum (MD5)

643691bcde62fad7abc49ad5b0abc807

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés