Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Progress in modelling fast-ion D-alpha spectra and neutral particle analyzer fluxes using FIDASIM
 
research article

Progress in modelling fast-ion D-alpha spectra and neutral particle analyzer fluxes using FIDASIM

Geiger, B.
•
Stagner, L.
•
Heidbrink, W.W.
Show more
August 19, 2020
Plasma Physics and Controlled Fusion

FIDASIM is a code that models signals produced by charge-exchange reactions between neutrals and ions (both fast and thermal) in magnetically confined plasmas. With the ion distribution function as input, the code predicts the efflux to a neutral particle analyzer diagnostic and the photon radiance of Balmer-alpha light to a fast-ion Dα diagnostic, in addition to many other related quantities. A new, parallelized version of the Monte Carlo code FIDASIM has been developed in Fortran90 that is substantially faster than the original interactive data language version. Modified algorithms include more accurate treatments of the time dependent collisional-radiative equations that describe neutral energy levels, of the cloud of ‘halo’ neutrals that surround the injected neutral beam, and of finite Larmor radius effects. Enhanced physics capabilities include modelling ‘passive’ signals from cold edge neutrals, the ability to treat general three-dimensional magnetic confinement configurations, and calculations of diagnostic-specific weight functions that enable tomographic reconstructions of the fast-ion distribution function. Neutral beam attenuation, beam emission, and fast-ion birth profiles are also modelled. The new algorithms have been successfully validated against experimental data and new features have been tested through benchmarks between two independently developed versions of the code.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

84843_fidasim_paper_2020_peer_reviewd.pdf

Access type

openaccess

Size

4.79 MB

Format

Adobe PDF

Checksum (MD5)

843ea4d5ac3e8cf55d0c3c025b93e2ca

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés