Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Experimental observation of the acoustic Z2 Weyl semimetallic phase in synthetic dimensions
 
research article

Experimental observation of the acoustic Z2 Weyl semimetallic phase in synthetic dimensions

Zangeneh Nejad, Farzad  
•
Fleury, Romain  
August 27, 2020
Physical Review B

Scalar waves such as airborne sound lack an intrinsic spin degree of freedom, making the realization of sonic Z2 topological phases based on spin degeneracy challenging. Here, we demonstrate the relevance of synthetic dimensions and higher-dimensional topological physics for exploring topological phases based on acoustic pseudo-spin with exact Kramers degeneracy. Interestingly, we find that a carefully designed two-band one-dimensional Hamiltonian with two additional phason degrees of freedom can enter a Z2 semimetallic phase with nonzero topological invariants carried by pairs of Weyl points in a three-dimensional synthetic momentum space. Taking advantage of the high localization of sonic quasibound states, embedded in the modal continuum of a one-dimensional acoustic waveguide, we implement a Z2 topological Weyl system and experimentally observe its signature in far-field sound scattering experiments. Our findings establish sonic quasibound states in continuum as a fertile ground for exploring higher dimensional Weyl physics in scattering media, and provide a viable experimental path to study spin-related topological effects in acoustics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevB.102.064309.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY

Size

2.38 MB

Format

Adobe PDF

Checksum (MD5)

7920aaf1aa84db62f83b994550cc0a8d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés